# NI 43-101 Updated Technical Report on Resources and Reserves Pan Gold Project White Pine County, Nevada

Effective Date: December 31, 2022 Report Date: March 16, 2023

**Report Prepared for:** 

## Calibre Mining Corp.

Suite 1560, 200 Burrard Street Vancouver, BC Canada V6C 3L6

#### **Report Prepared by:**



SRK Consulting (U.S.), Inc. 5250 Neil Road, Suite 300 Reno, NV 89502

Geoscience Ltd.

APEX Geoscience Ltd.

#100, 11450 – 160th St. NW,
Edmonton, AB T5M 3Y7

SRK Project Number: USPR001306

## **Acknowledgments**

#### Signed by Qualified Persons:

Justin Smith, B.Sc., P.E., RM-SME (SRK)
Michael Dufresne, M.Sc., P.Geol., P.Geo. (APEX)
Adrian Dance, PhD, PEng., FAusIMM (SRK)
Valerie Sawyer, RM-SME (SRK)
Andy Thomas, M.Eng., PEng. (SRK)
Michael Iannacchione, B.Sc., MBA, P.E. (SRK)

#### Reviewed by:

Dustin Meisburger, PEng., RM-SME (SRK)

**Disclaimer.** SRK has prepared this document for Calibre Mining Corp. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.

The opinions expressed in this document have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. While SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.

## **Contents**

| 1    | Summary                                                                  |    |
|------|--------------------------------------------------------------------------|----|
| 1.1  | Property Description and Ownership                                       | 1  |
| 1.2  | Geology and Mineralization                                               | 2  |
|      | 1.2.1 Status of Exploration and Drilling                                 | 3  |
| 1.3  | Mineral Processing and Metallurgical Testing                             | 5  |
| 1.4  | Mineral Resource Estimate                                                |    |
| 1.5  | Mineral Reserve Estimate                                                 |    |
| 1.6  | Mining Methods                                                           |    |
| 1.7  | Recovery Methods                                                         |    |
| 1.8  | Project Infrastructure                                                   |    |
| 1.9  | Environmental Studies and Permitting                                     |    |
| 1.10 | · · · · · · · · · · · · · · · · · · ·                                    |    |
|      | 1.10.1 Capital Cost Summary                                              |    |
|      | 1.10.2 Operating Cost Summary                                            |    |
| 1.11 | Economic Analysis                                                        |    |
| 1.12 | ·                                                                        |    |
|      |                                                                          |    |
| 2    | Introduction                                                             | 17 |
| 2.1  | Terms of Reference and Purpose of the Report                             | 17 |
| 2.2  | Qualifications of Consultants                                            | 17 |
| 2.3  | QP Responsibilities                                                      | 18 |
| 2.4  | Details of Inspection                                                    | 18 |
| 2.5  | Sources of Information                                                   | 19 |
| 2.6  | Effective Date                                                           | 19 |
| 2.7  | Units of Measure                                                         | 19 |
| 3    | Reliance on Other Experts                                                | 20 |
| 4    | Property Description and Location                                        | 21 |
| 4.1  | Property Location                                                        | 21 |
| 4.2  | Mineral Titles                                                           | 22 |
|      | 4.2.1 Nature and Extent of Issuer's Interest                             | 24 |
| 4.3  | Royalties, Agreements and Encumbrances                                   | 24 |
| 4.4  | Environmental Liabilities and Permitting                                 | 25 |
|      | 4.4.1 Environmental Liabilities                                          | 25 |
|      | 4.4.2 Required Permits and Status                                        | 25 |
| 4.5  | Other Significant Factors and Risks                                      | 27 |
| 5    | Accessibility, Climate, Local Resources, Infrastructure and Physiography | 28 |
| 5.1  | Topography, Elevation and Vegetation                                     |    |
| 5.2  | Accessibility and Transportation to the Property                         |    |
| 5.3  | Climate and Length of Operating Season                                   |    |
| 5.4  | Sufficiency of Surface Rights                                            |    |
| 5.5  | Infrastructure Availability and Sources                                  |    |
| 6    | History                                                                  | 31 |
| 6.1  | Prior Ownership and Ownership Changes                                    | 31 |

| 6.2         | Exploration and Development Results of Previous Owners                                 | 31  |
|-------------|----------------------------------------------------------------------------------------|-----|
| 6.3         | Historical Mineral Resource and Reserve Estimates                                      | 33  |
|             | 6.3.1 Echo Bay                                                                         | 33  |
|             | 6.3.2 Alta BAY Joint Venture                                                           | 34  |
|             | 6.3.3 Latitude Minerals Corporation                                                    |     |
|             | 6.3.4 Castleworth Ventures                                                             |     |
|             | 6.3.5 Midway 2011                                                                      | 38  |
|             | 6.3.6 Midway 2015                                                                      |     |
| 6.4         | Historical Production                                                                  |     |
| 7           | Geological Setting and Mineralization                                                  | 41  |
| 7.1         | Regional Geology                                                                       |     |
| 7.2         | Local and Property Geology                                                             |     |
| 7.3         | Lithology and Stratigraphy                                                             |     |
|             | 7.3.1 Alteration                                                                       |     |
|             | 7.3.2 Structure                                                                        |     |
| 7.4         | Significant Mineralized Zones                                                          |     |
| 0           | Deposit Type                                                                           | E1  |
| 8<br>8.1    | Mineral Deposit                                                                        |     |
| o. 1<br>8.2 | Geological Model                                                                       |     |
| 0.2         | Geological Model                                                                       | 51  |
| 9           | Exploration                                                                            | 52  |
| 10          | Drilling                                                                               |     |
| 10.1        | Historical (Pre-2018) Drilling                                                         |     |
| 10.2        | 2018 Drilling                                                                          | 56  |
| 10.3        | 2019 Drilling                                                                          | 58  |
| 10.4        | 2020 Drilling                                                                          | 60  |
| 10.5        | 2021 Drilling                                                                          | 65  |
| 10.6        | 2022 Drilling                                                                          | 69  |
| 11          | Sample Preparation, Analysis and Security                                              | 77  |
| 11.1        | Sample Collection, Preparation and Security                                            | 78  |
| 11.2        | Analytical Procedures                                                                  | 78  |
| 11.3        | Quality Assurance – Quality Control                                                    | 79  |
|             | 11.3.1 2018 Drilling QA/QC                                                             | 80  |
|             | 11.3.2 2019 Drilling QA/QC                                                             | 84  |
|             | 11.3.3 2020 Drilling QA/QC                                                             | 88  |
|             | 11.3.4 2021 Drilling QA/QC                                                             | 93  |
|             | 11.3.5 2022 Drilling QA/QC                                                             | 97  |
|             | 11.3.6 Umpire Checks                                                                   | 104 |
|             | 11.3.7 Adequacy of Sample Collection, Preparation, Security and Analytical Procedures. | 105 |
| 12          | Data Verification                                                                      | 106 |
| 12.1        | Geology and Resources                                                                  | 106 |
| 12.2        | Database Data Verification Process                                                     | 106 |
| 12.3        | Current Data Verification                                                              | 107 |
| 12.4        | Metallurgy                                                                             | 107 |
| 12.5        | Environmental                                                                          | 107 |

| 12.6         | Mine Economics                                                        | 107 |
|--------------|-----------------------------------------------------------------------|-----|
| 12.7         | Rock Mechanics                                                        | 108 |
| 13           | Mineral Processing and Metallurgical Testing                          | 100 |
| 13.1         | Midway Gold Testwork (to 2017)                                        |     |
| 13.2         | GRP Minerals Testwork (to 2018)                                       |     |
| 13.3         | Recent Calibre Mining Testwork                                        |     |
| 13.4         | <u> </u>                                                              |     |
|              |                                                                       |     |
| 14           | Mineral Resource Estimate                                             |     |
| 14.1         | Introduction                                                          |     |
| 14.2         | Drill Hole Data Description                                           |     |
|              | 14.2.1 Calibre Drill hole Data                                        |     |
| 440          | 14.2.2 APEX Micromine Drill hole Database                             |     |
| 14.3         | Geological Model                                                      |     |
| 14.4         | Estimation Domain Interpretation                                      |     |
|              | 14.4.1 Geological Interpretation of Mineralization Domains            |     |
|              | 14.4.2 Estimation Domain Interpretation Methodology                   |     |
| 14.5         | Exploratory Data Analysis and Compositing                             |     |
|              | 14.5.1 Bulk Density                                                   |     |
|              | 14.5.2 Raw Analytical Data                                            |     |
|              | 14.5.3 Compositing Methodology                                        |     |
|              | 14.5.4 Orphan Analysis                                                |     |
|              | 14.5.5 Capping                                                        |     |
|              | 14.5.6 Declustering                                                   |     |
|              | 14.5.7 Final Composite Statistics                                     |     |
|              | 14.5.8 Variography and Grade Continuity                               |     |
|              | 14.5.9 Contact Analysis                                               |     |
| 14.6         | Pan Block Model                                                       |     |
|              | 14.6.1 Block Model Parameters                                         |     |
|              | 14.6.2 Volumetric Checks                                              |     |
| 14.7         | Grade Estimation Methodology                                          |     |
| 14.8         | Model Validation                                                      |     |
|              | 14.8.1 Visual Validation                                              | 144 |
|              | 14.8.2 Statistical Validation                                         | 144 |
| 14.9         | Mineral Resource Classification                                       | 150 |
| 14.10        | D Evaluation of Reasonable Prospects for Eventual Economic Extraction | 151 |
| 14.11        | 1 Mineral Resource Reporting                                          | 152 |
| 14.12        | 2 Discussion of Resource Modelling and Risks                          | 157 |
| 15           | Mineral Reserve Estimate                                              | 150 |
| 15.1         |                                                                       |     |
| 15.1         |                                                                       |     |
|              |                                                                       |     |
|              | 15.1.2 Break Even Cut-off Grade                                       |     |
|              | 15.1.3 Internal Cut-off Grade                                         |     |
| 45.0         | 15.1.4 Cut-off Grade for Report                                       |     |
| 15.2<br>15.3 | Reserve Estimate                                                      |     |
| 10.0         | 10074111 400010                                                       | 100 |
| 16           | Mining Methods                                                        | 161 |

| 16.1  | <b>Current Mining Met</b>                                | hods                                     | 161 |
|-------|----------------------------------------------------------|------------------------------------------|-----|
| 16.2  | 6.2 Parameters Relevant to Mine or Pit Designs and Plans |                                          |     |
|       | 16.2.1 Geotechn                                          | nical Design – Pits                      | 162 |
|       | 16.2.2 Geotechn                                          | nical Design – Waste Rock Disposal Areas |     |
|       | 16.2.3 Hydrologi                                         | cal                                      |     |
| 16.3  | , ,                                                      |                                          |     |
|       | •                                                        | esource Models                           |     |
|       | 16.3.2 Topograp                                          | hic Data                                 | 167 |
|       |                                                          | ion Parameters and Constraints           |     |
|       | •                                                        | Angles                                   |     |
|       | •                                                        | ization Results                          |     |
| 16.4  | •                                                        |                                          |     |
| 16.5  | •                                                        |                                          |     |
| 16.6  | •                                                        | chedule                                  |     |
|       |                                                          | duction                                  |     |
| 16.7  |                                                          | le Design                                |     |
|       | ·                                                        | ock Storage Facility                     |     |
|       |                                                          | rpiles                                   |     |
| 16.8  |                                                          | equirements                              |     |
|       |                                                          | Requirements and Fleet Selection         |     |
|       |                                                          | nd Blasting                              |     |
|       | 9                                                        | and Hauling                              |     |
|       |                                                          | and Auxiliary Equipment                  |     |
|       | • • •                                                    | er                                       |     |
|       | •                                                        | rol                                      |     |
| 16.9  |                                                          |                                          |     |
|       | •                                                        | S                                        |     |
| 10.10 |                                                          | Vater                                    |     |
|       |                                                          | ater                                     |     |
|       |                                                          | ng System                                |     |
|       | 10.10.5 Dewaterii                                        | ig Gysterii                              | 191 |
| 17    | Recovery Methods.                                        |                                          | 192 |
| 17.1  | Historical Operation                                     | າ                                        | 192 |
| 17.2  | Current Practice                                         |                                          | 192 |
| 17.3  | Recent Operating F                                       | Results                                  | 197 |
| 17.4  | QP Comments                                              |                                          | 200 |
| 17.5  | Consumables                                              |                                          | 201 |
| 18    | Project Infrastructur                                    | re                                       | 203 |
| 18.1  | -                                                        | Logistic Requirements                    |     |
|       | 18.1.1 On-Site Ir                                        | nfrastructure                            | 203 |
|       |                                                          | pply and Site Water Management           |     |
|       |                                                          | nd Access Roads                          |     |
|       |                                                          | erations and Support Facilities          |     |
|       | •                                                        | Support Facilities                       |     |
|       |                                                          | Support Facilities                       |     |
|       |                                                          | ipply and Distribution                   |     |
| 18.2  |                                                          |                                          |     |
| 19    | Market Studies and                                       | Contracts                                | 208 |
| -     |                                                          |                                          |     |

| 19.1  | Contracts and Status                                             | 208 |
|-------|------------------------------------------------------------------|-----|
| 20    | Environmental Studies, Permitting and Social or Community Impact | 209 |
| 20.1  |                                                                  |     |
| 20.2  |                                                                  |     |
|       | 20.2.1 Bureau of Land Management                                 |     |
|       | 20.2.2 U.S. Fish and Wildlife Service                            |     |
| 20.3  |                                                                  |     |
|       | 20.3.1 Reclamation Permit                                        |     |
|       | 20.3.2 Air Permits                                               | 212 |
|       | 20.3.3 Water Pollution Control Permit                            | 212 |
|       | 20.3.4 Dam Safety Permit                                         | 212 |
|       | 20.3.5 Water Appropriations                                      | 213 |
|       | 20.3.6 Mining Stormwater Permit                                  | 213 |
|       | 20.3.7 Industrial Artificial Pond Permit                         | 213 |
| 20.4  | Required Authorizations and Permits                              | 213 |
| 20.5  |                                                                  |     |
|       | 20.5.1 Special Status Plant and Animal Species                   |     |
|       | 20.5.2 Wild Horses                                               |     |
|       | 20.5.3 Cultural Resources                                        |     |
|       | 20.5.4 Mine Waste Characterization and Management                |     |
|       | 20.5.5 Surface and Groundwater Characterization                  |     |
|       | 20.5.6 Visual Resources                                          |     |
| 20.6  | J                                                                |     |
| 20.7  |                                                                  |     |
| 20.8  | , ,                                                              |     |
|       | 20.8.1 Developed Operations                                      |     |
|       | 20.8.2 Period of Operations                                      |     |
|       | 20.8.3 Planned Operating Procedures                              |     |
|       | Post-Performance or Reclamations Bonds                           |     |
|       | 0 Social and Community                                           |     |
|       | 1 Mine Reclamation and Closure                                   |     |
| 20.12 | 2 Reclamation Measures During Operations and Project Closure     |     |
|       | 20.12.1 Reclamation of Open Pits                                 |     |
|       | 20.12.2 Reclamation of WRDAs                                     |     |
| 00.40 | 20.12.3 Reclamation of the Heap Leach Facility                   |     |
|       | 3 Closure Monitoring                                             |     |
| 20.14 | 4 Reclamation Bond and Closure Cost Estimate                     |     |
|       | 20.14.1 Agency-Approved Reclamation Surety                       |     |
|       | 20.14.2 Closure Cost Estimate                                    | 230 |
| 21    | Capital and Operating Costs                                      | 231 |
| 21.1  | · · · · · · · · · · · · · · · · · · ·                            |     |
|       | 21.1.1 Basis for Capital Cost Estimates                          | 231 |
|       | 21.1.2 Mine Capital Cost                                         | 231 |
|       | 21.1.3 Process Capital Cost                                      |     |
|       | 21.1.4 Leach Pad Capital Cost                                    |     |
|       | 21.1.5 Reclamation and Closure Costs                             |     |
|       | 21.1.6 Sustaining Capital                                        | 232 |
| 21 2  | Operating Cost Estimates                                         |     |

|       | 21.2.1     | Basis for Operating Cost Estimates                                                                                                                 | 233 |
|-------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|       | 21.2.2     | Mining Cost Estimates                                                                                                                              |     |
|       | 21.2.3     | Contractor Mining Cost Estimates                                                                                                                   |     |
|       | 21.2.4     | Processing Cost Estimates                                                                                                                          |     |
|       | 21.2.5     | General and Administrative Cost Estimate                                                                                                           |     |
|       | 211210     |                                                                                                                                                    |     |
| 22    | Econon     | nic Analysis                                                                                                                                       | 239 |
| 23    | Adjacer    | nt Properties                                                                                                                                      | 240 |
| 23.1  | Gold Ro    | ock                                                                                                                                                | 240 |
| 23.2  | Bald Mo    | ountain Mine                                                                                                                                       | 242 |
| 23.3  | Green S    | Springs Mine                                                                                                                                       | 242 |
| 23.4  | Mount I    | Hamilton Mine                                                                                                                                      | 242 |
| 23.5  | Lookou     | t Mountain Project                                                                                                                                 | 243 |
| 23.6  | Ruby H     | ill Mine                                                                                                                                           | 243 |
| 24    | Other R    | elevant Data and Information                                                                                                                       | 245 |
| 25    | Interpre   | tation and Conclusions                                                                                                                             | 246 |
| 25.1  |            | tion                                                                                                                                               |     |
| 25.2  |            | Resource Estimate                                                                                                                                  |     |
| 25.3  |            | and Mineral Reserve                                                                                                                                |     |
| 25.4  | _          | rgy and Processing                                                                                                                                 |     |
| 25.5  |            | mental Studies and Permitting                                                                                                                      |     |
| 25.6  |            | ed Capital and Operating Outcomes                                                                                                                  |     |
| 25.7  |            | eable Impacts of Risks                                                                                                                             |     |
| 00    | 5          |                                                                                                                                                    | 054 |
| 26    |            | mendations                                                                                                                                         |     |
| 26.1  |            | ces and Exploration                                                                                                                                |     |
| 26.2  | •          |                                                                                                                                                    |     |
| 26.3  |            | technical Recommendations                                                                                                                          |     |
| 26.4  |            | rgy and Processing                                                                                                                                 |     |
| 26.5  | Costs      |                                                                                                                                                    | 252 |
| 27    | Referer    | ices                                                                                                                                               | 254 |
| 28    | Glossai    | у                                                                                                                                                  | 256 |
| 28.1  | Mineral    | Resources                                                                                                                                          | 256 |
| 28.2  | Mineral    | Reserves                                                                                                                                           | 256 |
| 28.3  | Definition | on of Terms                                                                                                                                        | 257 |
| 28.4  |            | ations                                                                                                                                             |     |
|       | . <b></b>  |                                                                                                                                                    |     |
|       | of Ta      |                                                                                                                                                    |     |
| ıable |            | n Mine Edge-diluted Resource Estimate Constrained within the '\$1700/oz' Pit Shell for Gold Specific to Area (effective date of December 31, 2022) | 9   |
| Table |            | n Project Mineral Reserve Estimate as of December 31, 2022                                                                                         |     |
|       |            | pital Cost Summary                                                                                                                                 |     |
|       |            | erating Cost Summary                                                                                                                               |     |
|       |            | commended Work Plan                                                                                                                                |     |
|       |            |                                                                                                                                                    |     |

| Table 2-1: QP Responsibilities                                                                                                                                                                         |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2-2: Site Visit Participants                                                                                                                                                                     | 19  |
| Table 4-1: Pan Royalty Schedule                                                                                                                                                                        |     |
| Table 4-2: Status of Major Permits, Authorizations, and Licenses as of January 2023                                                                                                                    |     |
| Table 6-1: Project Drilling History                                                                                                                                                                    |     |
| Table 6-2: Echo Bay Historical Polygonal Ore Reserve Estimation, 1988                                                                                                                                  |     |
| Table 6-3: Alta Bay Historical Polygonal Geologic Ore Reserves, 1990                                                                                                                                   |     |
| Table 6-4: Alta Bay Historical Computer Generated Ore Reserves, 1990                                                                                                                                   |     |
| Table 6-5: Alta Bay Historical Polygonal Geologic Ore Reserves, 1991                                                                                                                                   |     |
| Table 6-6: Alta Bay Historical Computer Model Generated Recoverable Ore Reserves, 1991                                                                                                                 |     |
| Table 6-7: Latitude Historic Resource Estimate, 1999                                                                                                                                                   |     |
| Table 6-8: Castleworth Ventures Historical Resource Estimate, 2005                                                                                                                                     |     |
| Table 6-9: Midway Historical Resource Estimate, 2011                                                                                                                                                   | 38  |
| Table 6-10: Midway Historical Reserves Statement, 2011                                                                                                                                                 |     |
| Table 6-11: Midway Historical Resource Estimate, 2015                                                                                                                                                  |     |
| Table 6-12: Midway Historical Reserves Statement, 2015                                                                                                                                                 | 39  |
| Table 6-13: Historical Gold Production at Pan                                                                                                                                                          | 40  |
| Table 10-1: Pan 2018 RC Drillhole Assay Highlights                                                                                                                                                     | 57  |
| Table 10-2: Pan 2019 RC Drillhole Assay Highlights                                                                                                                                                     | 59  |
| Table 10-3: Pan 2020 RC Drillhole Assay Highlights                                                                                                                                                     | 61  |
| Table 10-4: Pan 2020 Core Drillhole Assay Highlights                                                                                                                                                   | 62  |
| Table 10-5: Pan 2021 Drillhole Assay Highlights                                                                                                                                                        | 66  |
| Table 10-6: Pan 2022 Drillhole Assay Highlights                                                                                                                                                        | 70  |
| Table 13-1: Master Composite Gold Assays                                                                                                                                                               | 112 |
| Table 13-2: Master Composite LECO Carbon & Sulfur                                                                                                                                                      | 112 |
| Table 13-3: Master Composite XRD Main Minerals (not 100% total)                                                                                                                                        | 113 |
| Table 13-4: Master Composite Column Residue Slump                                                                                                                                                      | 116 |
| Table 14-1: Geological Characteristics of Controls on Mineralization that occur within each Estimation Domain                                                                                          | 124 |
| Table 14-2: Tonnage Factors used in the MRE                                                                                                                                                            | 128 |
| Table 14-3: Summary Statistics of Raw Gold Assays (in ppm) from Sample Intervals Flagged within each of the Ten Estimation Domain                                                                      | 129 |
| Table 14-4: Orphan Analysis Comparing the Gold Statistics (in ppm) of Raw Assays and Uncapped Composite Samples with and without Orphans                                                               | 133 |
| Table 14-5: Capping Levels Applied to Composites Before Gold Estimation                                                                                                                                |     |
| Table 14-6: Cell Sizes Used to Calculate Declustering Weight in each Estimation Domain                                                                                                                 |     |
| Table 14-7: Summary Statistics from Composites Contained within the Estimation Domains that have been                                                                                                  |     |
| Declustered and Capped, with the < 1.5 m Orphans Removed                                                                                                                                               |     |
| Table 14-8: Parameters of the Modelled Gold Variograms from each Estimation Domain                                                                                                                     |     |
| Table 14-9: Pan 3D Block Model Size and Extents                                                                                                                                                        |     |
| Table 14-10: Estimation Domain Wireframe Versus Block-model Volume Comparison                                                                                                                          |     |
| Table 14-11: Gold Grade Estimation Search and Kriging Parameters                                                                                                                                       |     |
| Table 14-12: Search Restrictions Applied During Each Run of the Multiple-pass Classification Strategy                                                                                                  |     |
| Table 14-13: Parameters for Lerchs-Grossman Pit optimization for Mineral Resource Estimate                                                                                                             | 152 |
| Table 14-14: Pan Mine Edge-diluted Resource Estimate Constrained within the '\$1700/oz' Pit Shell for Gold Specific to Area (effective date of December 31, 2022)                                      | 154 |
| Table 14-15: The Pan Mine Resource Estimate Constrained within the '\$1700/oz' Au Pit Shell for Gold at Cut-                                                                                           |     |
| off Grades Specific to Alteration Type (effective date of December 31, 2022)                                                                                                                           | 155 |
| Table 14-16: Sensitivity Analysis of the Pan Mine Edge-diluted Resource Estimate Constrained within the '\$1700/oz' Pit Shell for Gold at Various Cut-off Grades (effective date of December 31, 2022) |     |
| Table 15-1: Pan Project Mineral Reserve Estimate as of December 31, 2022                                                                                                                               |     |
| Table 10 1.1 alt i loject willeral Neserve Estillate as di Decellibel 31, 2022                                                                                                                         | 100 |

| Table 16-1: Pit Slope Design Parameters                                                                                                                                               | 163 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 16-2: Investigation Program Drillholes                                                                                                                                          |     |
| Table 16-3: Pit Slope Stability Input Parameters                                                                                                                                      |     |
| Table 16-4: Pit Optimization Parameters                                                                                                                                               |     |
| Table 16-5: Slope angle sectors used to generate pit shells                                                                                                                           | 169 |
| Table 16-6: Ultimate LG Pit Material Quantities, US\$1,600/oz Gold Sales Price                                                                                                        |     |
| Table 16-7: Pit Design Criteria – Operations                                                                                                                                          |     |
| Table 16-8: Reserves by Mining Area                                                                                                                                                   | 173 |
| Table 16-9: Design Changes                                                                                                                                                            |     |
| Table 16-10: Mine Production Schedule                                                                                                                                                 |     |
| Table 16-11: Required Mine Production Equipment                                                                                                                                       | 189 |
| Table 16-12: Personnel Requirements                                                                                                                                                   | 190 |
| Table 17-1: Crushed Ore Stacked on Pad                                                                                                                                                |     |
| Table 17-2: Estimate of Recovered Gold Ounces                                                                                                                                         | 200 |
| Table 17-3: Reagent Cost 2018 to 2022                                                                                                                                                 | 201 |
| Table 17-4: Power Cost 2018 to 2022                                                                                                                                                   | 201 |
| Table 18-1: Maximum Water Usage                                                                                                                                                       | 205 |
| Table 19-1: Gold price per ounce by year                                                                                                                                              | 208 |
| Table 20-1: Water Appropriations                                                                                                                                                      |     |
| Table 20-2: Status of Major Permits, Authorizations, and Licenses as of January 2023                                                                                                  |     |
| Table 20-3: Acres of Mapped PHMA and GHMA and Ratios for Habitat Restoration Using Acreages                                                                                           |     |
| Table 20-4: Summary of Authorized Phase 1 and Life-of-Mine Disturbance                                                                                                                |     |
| Table 21-1: Capital Cost Summary                                                                                                                                                      |     |
| Table 21-2: Mine Capital Cost                                                                                                                                                         | 231 |
| Table 21-3: Process Capital Cost                                                                                                                                                      | 232 |
| Table 21-4: Leach Pad Capital Cost                                                                                                                                                    |     |
| Table 21-5: Life on Mine Operating Cost Summary                                                                                                                                       | 233 |
| Table 21-6: Mine Production Costs                                                                                                                                                     |     |
| Table 21-7: Contractor Mining Cost                                                                                                                                                    | 234 |
| Table 21-8: Contractor Fixed Mining Cost                                                                                                                                              | 234 |
| Table 21-9: Contractor Variable Mining Cost                                                                                                                                           | 235 |
| Table 21-10: Owner Mining Cost Summary                                                                                                                                                | 235 |
| Table 21-11: Owner Fixed Cost Summary                                                                                                                                                 | 235 |
| Table 21-12: Owner Variable Cost Summary                                                                                                                                              | 235 |
| Table 21-13: Process Production Costs                                                                                                                                                 | 236 |
| Table 21-14: Fixed Process Production Costs                                                                                                                                           | 236 |
| Table 21-15: Variable Process Production Costs                                                                                                                                        | 237 |
| Table 21-16: General and Administrative Costs                                                                                                                                         | 238 |
| Table 23-1: 2021 Bald Mountain Reserve Statement                                                                                                                                      | 242 |
| Table 23-2: Lookout Mountain Mineral Resource Statement                                                                                                                               | 243 |
| Table 25-1: Pan Mine Resource Estimate Constrained within the '\$1700/oz' Pit Shell for Gold at a Cut-off Grade of 0.1 g/t (0.003 oz/t) by Area (effective date of December 31, 2022) | 247 |
| Table 26-1: Summary of Costs for Recommended Work                                                                                                                                     |     |
| Table 28-1: Definition of Terms                                                                                                                                                       |     |
| Table 28-2: Abbreviations                                                                                                                                                             |     |
|                                                                                                                                                                                       |     |
| List of Figures                                                                                                                                                                       |     |
| Figure 1-1: Project Location Man                                                                                                                                                      | 2   |

| Figure 4-1: Project Location Map                                                                            | 21  |
|-------------------------------------------------------------------------------------------------------------|-----|
| Figure 4-2: Land Status Map                                                                                 |     |
| Figure 5-1: Existing Project Infrastructure                                                                 |     |
| Figure 7-1: Regional Geology Map                                                                            | 42  |
| Figure 7-2: Geologic Map of the Pan Mine Area with Conceptual Pit Crests                                    |     |
| Figure 7-3: Pan Project Stratigraphic Column                                                                |     |
| Figure 10-1: Calibre drillhole locations by year                                                            |     |
| Figure 11-1: 2018 Duplicate Au Fire Assay Results                                                           |     |
| Figure 11-2: 2018 Coarse Blank Au Fire Assay Results                                                        |     |
| Figure 11-3: 2018 Standard Reference Material (Oreas 6Pc) Fire Assay Results                                |     |
| Figure 11-4: 2018 Standard Reference Material (OxB130) Fire Assay Results                                   |     |
| Figure 11-5: 2018 Standard Reference Material (OxC129) Fire Assay Results                                   |     |
| Figure 11-6: 2018 Standard Reference Material (OxE126) Fire Assay Results                                   |     |
| Figure 11-7: 2018 Standard Reference Material (OxE143) Fire Assay Results                                   |     |
| Figure 11-8: 2018 Standard Reference Material (OxI121) Fire Assay Results                                   |     |
| Figure 11-9: 2019 Duplicate Au Fire Assay Results                                                           |     |
| Figure 11-10: 2019 Coarse Blank Au Fire Assay Results                                                       |     |
| Figure 11-11: 2019 Standard Reference Material (OxC152) Fire Assay Results                                  |     |
| Figure 11-12: 2019 Standard Reference Material (OxE150) Fire Assay Results                                  |     |
| Figure 11-13: 2019 Standard Reference Material (OxJ137) Fire Assay Results                                  |     |
| Figure 11-14: 2020 Duplicate Au Fire Assay Results                                                          |     |
| Figure 11-15: 2020 Coarse Blank Au Fire Assay Results                                                       |     |
| Figure 11-16: 2020 Standard Reference Material (OxC152) Fire Assay Results                                  |     |
| Figure 11-17: 2020 Standard Reference Material (OxE150) Fire Assay Results                                  |     |
| Figure 11-18: Control chart of coarse blank samples assayed for the 2020 core drilling program              |     |
| Figure 11-19: Control chart of CDN-GS-P1A CRM samples assayed for the 2020 core drilling program            |     |
| Figure 11-20: Control chart of CDN-GS-P5E CRM samples assayed for the 2020 core drilling program            |     |
| Figure 11-21: Control chart of CDN-GS-2U CRM samples assayed for the 2020 core drilling program             |     |
| Figure 11-22: Control chart of coarse blank samples assayed for the 2021 RC and core drilling programs      |     |
| Figure 11-23: Control chart of CDN-CM-29 CRM samples assayed for the 2021 RC drilling program               |     |
| Figure 11-24: Control chart of OREAS 277 CRM samples assayed for the 2021 RC drilling program               |     |
| Figure 11-25: Control chart of OREAS 506 CRM samples assayed for the 2021 RC drilling program               |     |
| Figure 11-26: Control chart of CDN-GS-P1A CRM samples assayed for the 2021 core drilling program            |     |
| Figure 11-27: Control chart of CDN-GS-P5E CRM samples assayed for the 2021 core drilling program            |     |
| Figure 11-28: Scatter plot of 2021 and 2022 field duplicate samples, Au (ppm) fire assay results            |     |
| Figure 11-29: Control chart of coarse blank samples assayed for the 2022 RC and core drilling programs      |     |
| Figure 11-30: Control chart of CDN-GS-P1A CRM samples assayed for the 2022 core drilling program            |     |
| Figure 11-31: Control chart of CDN-GS-P5E CRM samples assayed for the 2022 core drilling program            |     |
| Figure 11-32: Control chart of CDN-GS-2U CRM samples assayed for the 2022 core drilling program             |     |
| Figure 11-33: Control chart of CDN-CM-29 CRM samples assayed for the 2022 RC and core drilling programs     |     |
| Figure 11-34: Control chart of OREAS 263 CRM samples assayed for the 2022 RC and core drilling programs     |     |
| Figure 11-35: Control chart of OREAS 277 CRM samples assayed for the 2022 RC and core drilling programs     |     |
| Figure 11-36: Control chart of OREAS 506 CRM samples assayed for the 2022 RC and core drilling programs     |     |
| Figure 11-37: Scatter plot comparison of umpire samples, ALS assays (y-axis) against the BV assays (x-axis) |     |
| for the 2021 and 2022 drill programs                                                                        | 105 |
| Figure 13-1: Master Composite Sample Preparation Flowsheet                                                  |     |
| Figure 13-2: Master Composite 10 mesh (2mm) Bottle Roll Gold Kinetics                                       |     |
| Figure 13-3: Master Composite 200 mesh (75µm) Bottle Roll Gold Kinetics                                     |     |
| Figure 13-4: Master Composite 200 mesh vs. 10 mesh Bottle Roll Leach Extractions                            |     |
| Figure 13-5: Master Composite Bottle Roll NaCN Consumption                                                  |     |

| Figure 13-6: | Master Composite Bottle Roll Lime Consumption                                                                                                                                                          | . 116 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 13-7: | Master Composite Column Leach Gold Kinetics                                                                                                                                                            | . 117 |
| Figure 13-8: | Master Composite Column Residue Permeability (equivalent load of 164 to 656ft)                                                                                                                         | . 118 |
| Figure 14-1: | Oblique View of 2022 Formation Model for Pan Mine                                                                                                                                                      | . 123 |
| Figure 14-2: | Plan View of the Estimation Domain Wireframes                                                                                                                                                          | . 125 |
|              | Oblique View of the Domain Wireframes Looking Down the Vector 045/-45                                                                                                                                  |       |
| Figure 14-4: | Cross-section Looking North along the Northing 14,280,385 N (purple – Banshee domain, red – North Pan domain                                                                                           | . 127 |
| Figure 14-5: | Example Cumulative Frequency Plot of Raw Gold Assays (in ppm) from Sample Intervals Flagged within the Banshee Estimation Domain                                                                       |       |
| Figure 14-6: | Cumulative Histogram of the Sample Interval Lengths analyzed within the Estimation Domains. Intervals that were not sampled or had insufficient recovery are not considered.                           |       |
| Figure 14-7: | Example of Orphan Analysis Comparing Cumulative Histograms of Raw Assays and Uncapped Composites with and without Orphans Contained within the Banshee Estimation Domain                               |       |
| Figure 14-8: | Example of a Probability Plot of the Composited Gold Values Before Capping for Banshee.  Capped Values are Highlighted in Red                                                                          |       |
| Figure 14-9: | Cumulative Histogram of Gold for the Banshee Domain Comparing Clustered and Declustered Composites                                                                                                     |       |
| Figure 14-10 | ): Example of Standardized Gold Experimental and Modelled Semi-variogram for Banshee<br>Estimation Domain that can Produce Representative Variograms                                                   |       |
| Figure 14-11 | : Contact Analysis of Gold Grade at the Boundary between the Pan Mine Mineralized Estimation                                                                                                           | . 140 |
| Figure 14-12 | 2: Cross (Long)-section Looking East along 1998960E Illustrating the Estimated Au Values in the Block Model, the Estimation Domains (red line) and the \$1700 Au Resource Pit Shell (thick black line) | . 146 |
| Figure 14-13 | 3: Oblique Cross (Long)-section Looking Southeast Illustrating the Estimated Au Values in the Block Model, the Estimation Domains (red line) and the \$1700 Au Resource Pit Shell (thick black line)   | . 147 |
| Figure 14-14 | Example Swath Plots Comparing Composite Gold Values Versus the Estimated Block Model Gold Values for the Banshee estimation domain                                                                     |       |
| Figure 14-15 | 5: Example Illustrating Volume Variance Check of the Block Model's Estimated Gold Grades within the Banshee Estimation Domain                                                                          |       |
| Figure 14-16 | S: Contact Analysis of Comparison between Input Composites, Diluted and Undiluted Block Models  Gold Grade at the Boundary of the Estimation Domain and Waste                                          | . 149 |
| Figure 16-1: | LG Pit Tonnages and NPV Sensitivity at a \$1,600 Gold Price                                                                                                                                            |       |
| -            | US\$1,600 Au Sales Price Ultimate LG Pit                                                                                                                                                               |       |
| •            | Pan North (Green) and South (Red) Pit Designs                                                                                                                                                          |       |
|              | Contained Gold Ounces to Leach Pad by Mining Year                                                                                                                                                      |       |
|              | Ore and Waste Mining (mined tons and contained Au oz) by Mining Year                                                                                                                                   |       |
|              | Ore Production by Pit and Year                                                                                                                                                                         |       |
| •            | Hard and Soft Ore Production by Year                                                                                                                                                                   |       |
|              | Start of Mining – January 1, 2023                                                                                                                                                                      |       |
|              | Mining Activities in 2023 (Red = Mining, Green – Stacking)                                                                                                                                             |       |
|              | ): Mining Activities in 2024 (Red = Mining, Green – Stacking)                                                                                                                                          |       |
| •            | : Mining Activities in 2025 (Red = Mining, Green – Stacking)                                                                                                                                           |       |
| -            | 2: Mining Activities in 2026 (Red = Mining, Green – Stacking)                                                                                                                                          |       |
|              | 3: Mining Activities in 2027 (Red = Mining, Green – Stacking)                                                                                                                                          |       |
|              | l: End of Mining                                                                                                                                                                                       |       |
| •            | 5: North Pan WRDA                                                                                                                                                                                      |       |
| U            | S: South Pan WRDA                                                                                                                                                                                      |       |
|              | Mining and Processing Flowsheet for Pan Mine                                                                                                                                                           |       |
| J            | G G                                                                                                                                                                                                    |       |

| Figure 17-2: Lime Silo to South Ore Truck                               | 195 |
|-------------------------------------------------------------------------|-----|
| Figure 17-3: 36x50" Lippman Jaw Crusher with Stockpile Loading          | 195 |
| Figure 17-4: Example Heap Leach Panel                                   |     |
| Figure 17-5: Example Cell Showing Ripped Surface After Grading          | 196 |
| Figure 17-6: Gold Cyanide-Soluble/ Fire Assay for Different Pits (2021) |     |
| Figure 17-7: Gold Cyanide-Soluble/ Fire Assay for Different Pits (2022) | 198 |
| Figure 17-8: Modelled vs. Six-Month Average Gold Ounce Production       |     |
| Figure 17-9: Modelled vs. Reported Leach Pad Inventory (Gold Ounces)    |     |
| Figure 17-10: Monthly Forecasted Pad Feed by Alteration                 |     |
| Figure 18-1: Existing infrastructure at the administrative office area  |     |
| Figure 23-1: Properties adjacent to the Pan Mine                        |     |
|                                                                         |     |

## **Appendices**

Appendix A Appendix B Appendix C Certificates of Qualified Persons

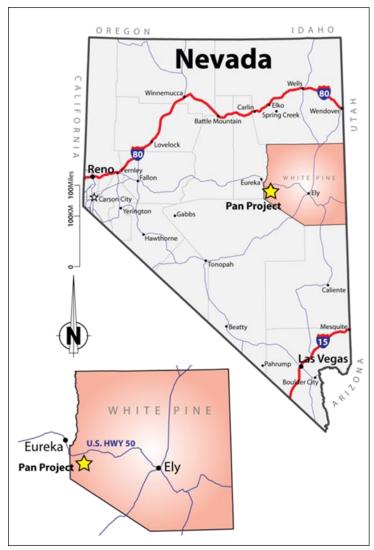
Mineral Claims

Nevada Department of Transportation Right-Of-Way Permit

## 1 Summary

This report was prepared as a National Instrument 43-101 (NI 43-101) Technical Report on Resources and Reserves (Technical Report) for Calibre Mining Corp. (Calibre) on the Pan Gold Project (Pan or the Project). This report was prepared by SRK Consulting (U.S.), Inc. (SRK) and APEX Geoscience Ltd. (APEX).

The Pan Mine is owned by GRP Pan, LLC d/b/a Fiore Gold Pan Mine (GRP), which is owned by Fiore Gold US (Inc), a subsidiary of Fiore Gold BC (Ltd), and finally a subsidiary of Calibre Mining Corp.


GRP acquired the Pan property as part of the acquisition of various mineral assets from subsidiaries of Midway Gold Corp. (Midway) by way of an asset purchase agreement. The acquisition closed on May 17, 2016, following approval of the asset sale by the United States Bankruptcy Court for the District of Colorado.

GRP returned the Pan property to commercial production on January 1, 2017.

### 1.1 Property Description and Ownership

The Pan property is located in the northern Pancake Range in White Pine County, Nevada, 22 miles southeast of the town of Eureka and 50 miles west of Ely. Location of the property is shown in Figure 1-1. The Project claim boundary encompasses approximately 10,673 acres, and consists of 563 contiguous, active, unpatented lode mining claims. Unpatented lode mining claims are kept active with annual maintenance fees paid to the Bureau of Land Management (BLM) and White Pine County by September 1<sup>st</sup> of each year.

Effective May 17, 2016, the Pan Mineral Lease dated January 7, 2003 was assigned and conveyed to GRP Pan, LLC.



Source: GRP, 2017

Figure 1-1: Project Location Map

## 1.2 Geology and Mineralization

The Pan Project is located in the Pancake Range of central Nevada, in the eastern sector of the Great Basin Physiographic Province. The current Great Basin landscape is shaped by crustal extension, which began in the middle Tertiary resulting in north-south trending mountain ranges and wide intervening valleys with thick sedimentary deposits. Mountain ranges are comprised of folded and tilted Jurassic to Cambrian-aged marine sedimentary rocks that have been uplifted on steeply dipping normal faults. Precambrian metamorphic rocks are present in some ranges, such as the Ruby Mountains north of the Project, but Paleozoic marine sedimentary rocks comprise the typical bedrock in the region. Tertiary extension has also caused localized volcanism, resulting in mafic to felsic flows, tuffs, and ash units capping sedimentary rocks. Volcanic units occur north and southeast of the Pan deposit areas. Lithologic

units in the Pan area are Devonian- to Pennsylvanian-age marine sediments, Cretaceous igneous intrusions, Tertiary volcanic tuffs and debris flows, and minor Tertiary to Quaternary alluvial deposits.

Pan has three main mineralized zones; North, Central, and South. Gold (Au) mineralization spatially follows the Devils Gate Limestone - Pilot Shale contact in all three, and is also controlled by steeplydipping faults that trend north-south and secondarily by west-northwest (WNW) open fold axes and related faults. North Pan is dominated by: 1) near-vertical pipes and bodies of silicified solution breccia localized at the Pilot Shale-Devils Gate Limestone contact adjacent to the Branham Fault Zone (BFZ), and 2) stratiform-like modestly dipping breccia bodies and zones west of the BFZ focused near the locally folded Pilot Shale-Devils Gate Limestone contact. Central and South Pan have more argillic alteration than silicic. North Pan exhibits dominantly silicic alteration. Mineralization in Central Pan is at the Pilot-Devils Gate contact and secondarily controlled by WNW trending open folds, and likely other subtle structures such as related faults, which have not been clearly identified. These open folds were not recognized from exploration drilling and have only become apparent after exposure in the pit walls. Their significance in controlling mineralization is also subtle but has been confirmed by examination of blast hole assays. South Pan mineralization occurs in two zones: 1) a wide, clay-altered, near-vertical solution breccia zone along the west side of the BFZ, and 2) a stratigraphically-controlled zone east of the Branham Fault along the Pilot-Devils Gate contact. This zone dips northeast at about 55°. The newly identified stratiform mineralization in the Banshee area, west of North Pan, is currently interpreted to represent the opposite limb 'mirror image' of the South Pan stratigraphically controlled zone.

#### 1.2.1 Status of Exploration and Drilling

Historical drilling at the Pan deposit dates back to 1978 with the initial discovery of gold-bearing jasperoids. Drilling operations have been conducted over the Project area since this discovery.

During 2018 to 2022, Calibre completed a multi-phase, multi-year drilling campaign to replace and add to reserves at Pan. The program focused on infilling gaps in the mine resources, converting inferred resources to measured or indicated, and extending reserves adjacent to the current mine pits. The 2018 to 2022 Calibre drill programs comprised 571 reverse circulation (RC) drill holes totaling 271,015 ft and 38 core holes totaling 15,407 ft. At total of 304 RC drill holes totaling 163,555 ft and 24 core holes totaling 11,593 ft were completed in 2021 and 2022 since that last mineral resource and reserve update.

The 2018 development drilling focused on expanding the resource at Red Hill and North Pan/Campbell. Forty-six drill holes were completed during this phase of drilling and account for 70% of the total footage drilled during 2018. Only three holes did not contain gold greater than the cutoff of 0.20 grams per metric tonne (g/t) (0.006 troy ounces[oz]/short ton[ton]) Au over a minimum of 10 ft for the development phase of the drill program.

The exploration portion of the 2018 drill program consisted of 25 RC drill holes completed over Breccia Hill, Black Stallion, and Dynamite for a total of 8,865 ft of drilling. Most of the drilling was focused on the Breccia Hill and Black Stallion targets. The exploration portion of the drill program was successful in expanding the known zones of gold mineralization.

Mineralization was extended at all targets drilled during the 2019 drilling program. A new area of mineralization, called Banshee, was discovered southwest of Red Hill and west of North Pan. This area of mineralization follows the Pilot – Devils Gate contact as it rises towards the surface towards the west.

The style of mineralization and alteration present is similar to mineralization seen throughout the mine. A total of 10 holes from the 2019 drill program tested the Banshee area and intersected significant gold mineralization in all but two holes.

The 2020 drill program was carried out from January to June 2020 and was comprised of 15 core holes and 154 RC holes with the primary goals of:

- Expanding known mineralization and geological understanding of the current resource;
- Increasing the known mineralization at the newly discovered Banshee zone;
- Expanding the resource between Red Hill and North Pan in order to merge both pits;
- Identifying mineralization at the exploration target Mustang; and
- Sterilization drilling at the current and proposed waste dump sites.

An updated Mineral Resource Estimated (MRE) was completed at the end of the 2020 drilling campaign and was provided in Smith et al (2021). This MRE is updated and superseded by the MRE herein.

Two drill programs were completed in 2021 from January to February, and October to December 2021 that consisted of the completion of 63 RC drillholes totaling 33,321.5 ft, one core hole that drilled 400 ft of PQ then transitioned to HQ for 356 ft (totaling 756 ft), and 1 HQ core hole totaling 527 ft. The goal of the 2021 drill programs was to expand and upgrade the known resource and explore for new mineralization within the mine area.

The 2021 drilling focused on the following target areas: Black Stallion South, Dune, Dynamite, Orpiment Alley, Pegasus, South Pan, South Pit. Other than the sterilization holes at the North Pan waste dump, more than 75% of the 2021 holes returned intercepts greater than the cutoff grade of 0.20 g/t (0.006 oz/ton) Au and lengths greater than or equal to 10 ft.

The bulk of the drilling was completed in Black Stallion South and Dune, with 29% (18 drillholes) and 17% (11 drillholes), respectively. Five of the 6 RC holes completed in Pegasus resulted in significant intersections at ~200 ft depth and provide a critical connection between South Pit and Dynamite Pit.

Five RC drillholes were designed and completed as condemnation holes to test if mineralization is present below the proposed North Pan waste dump site. Four drillholes were completed on and encountered only minor mineralization that is considered not significant. Drillhole PR21-010 encountered 20.00 ft of 0.23 g/t (0.007oz/ton) Au at 740.00 ft in hole PR21-010 and was the only condemnation hole in this area that intersected any significant gold mineralization.

The 2022 drill program was carried out from January to November 2022 and consisted of the completion of 240 RC drillholes totaling 135,330 ft and 21 HQ-size core holes totaling 10,310 ft. The goal of the 2022 drill program was to expand and upgrade the known resource and explore for new mineralization within and outside the mine area.

The 2022 drilling focused on the following target areas: Mustang, North Banshee, Palomino, Pegasus, Dynamite, Black Stallion South, Dune, Boulders, Syncline, Black Stallion, Orpiment Alley, Benji, North Dynamite, South Pit, and Limestone Canyon. Several exploration holes were drilled at new targets outside of the open pit operation that had not yet been tested; these targets are Happy Valley, Chainman

Point, Coyote, and Gattica. More than 50% of the 2022 holes returned intercepts greater than 0.20 g/t (0.006 oz/ton) Au and lengths greater than or equal to 10 ft.

Drillholes with significant mineralization that could lead to expanding the resource base and require follow up exploration were completed at a number of targets including Coyote, Palomino, North Dynamite, Pegasus, the south end of North Pan, the northern limit of North Pan and Mustang northwest of North Pan.

Coyote was initially identified through historical surface geochemistry and rock chip sampling with an evolving structural geological interpretation. Four RC drillholes were completes at Coyote, which is located approximately 3 km south-southwest of the Pan South Pit and is considered open for expansion. At Coyote, PR22-238 intersected 1.36 g/t (0.040 oz/ton) Au over 45 ft including 2.78 g/t (0.081 oz/ton) Au over 15 ft. and 0.61 g/t (0.018 oz/ton) Au over 60 ft in PR22-237.

Holes drilled in North Dynamite extend mineralization down dip and along strike, expanding mineralization north from the Dynamite Pit. Notable intercepts include:0.47 g/t (0.014 oz/ton) Au over 60 ft in Hole PR22-210; 1.67 g/t (0.049 oz/ton) Au over 40 ft including 2.12 g/t (0.062 oz/ton) Au over 30 ft in Hole PR22-224; and 0.67 g/t (0.020 oz/ton) Au over 75 ft including 1.14 g/t (0.033 oz/ton) Au over 30 ft in Hole PR22-190.

Five RC holes and 1 core hole drilled in Pegasus, along the eastern margin of the South Pit intersected mineralization at depth. Most notable is PR22-085 with 1.47 g/t (0.043 oz/ton) Au over 140 ft including 70 ft at 2.33 g/t (0.068 oz/ton) Au.

### 1.3 Mineral Processing and Metallurgical Testing

Metallurgical testing programs have been performed for the Pan project since 2010, completed by Resource Development Inc. (RDi), Phillips Enterprises LLC, Kappes Cassidy and Associates (KCA), McClelland Laboratories, Inc. and Forte Analytical. Two NI 43-101 reports have been issued on the property (SRK, 2017 and SRK, 2021) which include details of testwork completed up to 2020.

It should be noted Pan material includes two quite different ore types: harder, low-clay siliceous zones and softer, clay-rich argillic zones. In 2014, the heap leach pad failed due to poor percolation from a high proportion of clay-rich material. Since then, the Pan property has operated with a target blend of 60:40 "hard" to "soft" material and not experienced any issues with pad stability or solution pooling.

In 2022, Forte Analytical completed a detailed test program on 3,414 ft of whole PQ core (85 mm diameter) from 15 drillholes provided by Calibre Mining (Forte Analytical, 2022). The core intervals were logged and composited into eight samples: four from the South pit (siltstone, limestone, limestone/clay and limestone/calcite), two from Red Hill/Banshee pit (argillic, silicified) and two from the North pit (silicified, non-silicified).

Metallurgical testwork results on Pan samples have demonstrated a wide range of column leach extractions as well as size sensitivity. This has been broadly related to "hard" vs. "soft" zones and/or clay content but changes in ore domaining have not allowed historical testwork to be applied to current operating practices. (For example, a target blend of 60:40 hard to soft.)

It is the QP's opinion that additional testwork be conducted to relate cyanide soluble to fire assay gold assays (CN/FA) to final column leach extractions. Recent results have shown CN/FA values not to be reliable in estimating column leach extractions and will need other factors such as crushed size distribution and composition (e.g., XRD results) also included. Finally, rapid percolation or slump testing should be done to provide an indication of heap leach geotechnical conditions which are not a factor in bottle roll leach (or cyanide "shake") tests.

As there is uncertainty on the amount of "hard" material in the future, better geometallurgical characterization of the Pan deposits is needed to understand how the current blend can be modified when constructing future leach pads. That is, a lower ratio of hard to soft needs to be demonstrated as the new target blend based on both column leach and permeability test results. In addition, a greater proportion of "hard" material needs to be characterized in both North and South Pan pit areas.

#### 1.4 Mineral Resource Estimate

This report provides an updated Mineral Resource Estimate (MRE) for the Pan Mine and is based upon historical drilling and drilling conducted from 2018 to 2022 and supersedes all of the prior resource estimates for the Pan Mine. The resource estimate provided by Smith et al. (SRK 2021), Deiss et al. (SRK 2019) and Pennington et al. (SRK 2017) are superseded due to mining depletion and new drilling by the MRE herein. Other older resource estimates are now all considered historical.

The updated National Instrument (NI) 43-101 MRE was completed for the Pan Mine by APEX Geoscience Ltd. (APEX) of Edmonton, Alberta, Canada. Mr. Warren Black, M.Sc., P.Geo. and Mr. Tyler Acorn, M.Sc. contributed to the MRE under the direct supervision of co-author Mr. Michael Dufresne, M.Sc., P.Geol., P.Geo, a qualified person who takes responsibility for Section 14. Mr. Dufresne, M.Sc., P.Geol., P.Geo., visited the property in September 2020. Mr. Black, M.Sc., P.Geo. visited the property in October and November 2019, and more recently in January 2022. Mr. Black, Mr. Acorn, and Mr. Dufresne are independent of the Property and Calbire.

Definitions used in this section are consistent with those adopted by the Canadian Institute of Mining, Metallurgy and Petroleum ("CIM") Council in "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019 and "Definition Standards for Mineral Resources and Mineral Reserves" dated May 10th, 2014 and prescribed by the Canadian Securities Administrators' NI 43-101 and Form 43-101F1, Standards of Disclosure for Mineral Projects. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability.

Calibre provided APEX with the Pan Mine drill hole database that consists of analytical, geological, density, collar survey information and downhole survey information. In addition, Calibre provided a geological model for the Pan Mine that contains a stratigraphic and structural three dimensional (3D) interpretation produced by Pennington et al. (SRK 2017) and modified and refined by Smith et al. (SRK 2021) and Deiss et al. (SRK 2019) during an interval model update completed by SRK. Mr. Dufresne, Mr. Black and Mr. Acorn spot checked the historical validated database provided by Pennington et al. (SRK 2017) and later updated by Deiss et al. (SRK 2019), which included drill hole data collected by Calibre in 2018. Drilling completed in 2019 to 2022 was validated and compiled on-site by APEX personnel. No significant issues were found with the historical or modern drillhole data. The drill hole database used to calculate the MRE is comprised of 1,786 exploration drill holes completed from 1978

to 2016 by previous operators (1,184 holes totaling 380,081 ft) and 602 holes completed from 2018 to 2022 by Calibre (totaling 280,446 ft), yielding a total of 128,508 sample/interval entries. In the opinion of Mr. Dufresne, the current Pan drill hole database is deemed to be in good condition and suitable to use in ongoing resource estimation studies.

The MRE was calculated using a block model size of 20 ft (X) by 20 ft (Y) by 20 ft (Z). The gold grade was estimated for each block using Ordinary Kriging with locally varying anisotropy to ensure grade continuity in various directions is reproduced in the block model. The block model was partially diluted by estimating a waste grade for the portions of the outer blocks overlapping the edge of the estimation domain boundaries using composites within a transition zone along the outer edge of the mineralized estimation domains. The waste grade was then proportionately combined with the estimated grade for the portion of the block within the mineralized domain to obtain a final grade for each overlapping block. The partially diluted block model was utilized for resource pit optimization studies and the final MRE. The Mineral Resources are not Mineral Reserves. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability.

Modelling was conducted in the North American Datum (NAD) of 1983 (Zone 11) BLM feet projection. The database consists of 1,786 drill holes containing useable downhole data completed at the Pan Mine between 1978 to 2022. Estimation domains were constructed using a combination of gold grade and all available geological information that helped constrain different controls on mineralization. The estimation domains were used to subdivide the deposit into volumes of rock and the measured sample intervals within those volumes for geostatistical analysis. A total of 10 estimations domains for gold mineralization were created. A total of 37,588 sample intervals are contained within the combined 10 domains. The average grade of the raw samples is 0.016 oz/ton (0.44 g/t) Au. Downhole compositing was conducted at 10 ft intervals within the estimation domains. A total of 19,265 composites were created within the estimation domains including orphans, with an average grade of 0.013 oz/ton (0.43 g/t) Au without capping.

A total of 51 3D trend surfaces were modelled and used as input for the implicit modelling process applied to create the estimation domains and by kriging to ensure both honor the observed geological controls on mineralization. The trend surfaces were created using all available subsurface data, including RC and core drill hole assays, geological logs, and blasthole data. Nine of the trend surfaces represent faults associated with the Branham Fault Zone (BFZ). In contrast, the other 42 represent mineralization trends that run parallel or sub-parallel to the Pilot Shale—Devils Gate contact.

Ordinary Kriging (OK) was used to estimate gold grades for the Pan block models. Grade estimates are only calculated for blocks that contain more than 12.5% mineralized material by volume.

Estimation of blocks is completed with locally varying anisotropy (LVA), which uses different rotation angles to define the principal directions of the variogram model and search ellipsoid on a per-block basis. Blocks within the estimation domain are assigned rotation angles using a trend surface wireframe. This method allows structural complexities to be reproduced in the estimated block model. Variogram and search ranges are defined by the variogram model. To ensure that all blocks within the estimation domains are estimated, a three-pass method was used for each domain that utilizes three different variogram model and search ellipsoid configurations. Volume-variance corrections are enforced by restricting the maximum number of conditioning data to 20 and the maximum number of composites from each drill hole by 2 to 4 depending upon the domain.

The 2022 Pan Mine MRE Update is classified as a Measured, Indicated and Inferred Mineral Resource according to the CIM definition standards. The classification of the Pan Mine Measured, Indicated and Inferred Resource was based on geological confidence, data quality and grade continuity. The most relevant factors used in the classification process were:

- density of conditioning data;
- level of confidence in historical drilling results and collar locations;
- level of confidence in the geological interpretation; and,
- continuity of mineralization.

Resource classification was determined using a multiple-pass strategy that consists of a sequence of runs that flag each block with the run number of the block when it first meets a set of search restrictions. With each subsequent pass, the search restrictions are decreased, representing a decrease in confidence and classification from the previous run.

In order to demonstrate that the Pan Mine MRE has the potential for future economic extraction, the unconstrained and partially diluted resource block model was subjected to several pit optimization scenarios to look at the prospect for eventual economic extraction. Pit optimization was performed in Micromine using the industry standard Lerchs-Grossman algorithm (LG). The criteria used in the LG pit optimizer were considered reasonable for Nevada heap leach deposits. All Mineral Resources reported below are reported within an optimized pit shell using \$US1,700/oz for gold and was defined using blocks classified as Measured, Indicated, or Inferred. A variable lower gold grade cutoff and recovery is used based on the overprinting alteration.

The updated Pan Mine MRE is reported at various cutoffs depending on what type of alteration each block is flagged as. The Measured, Indicated, and Inferred MRE is partially diluted, constrained within an optimized pit shell, and includes a Measured and Indicated Mineral Resource of 37.24 million tons (33.8 million tonnes) at 0.010 oz/ton (0.33 g/t) Au for 358,900 ounces of gold and an Inferred Mineral Resource of 3.58 million tons (3.25 million tonnes) at 0.012 oz/ton (0.40 g/t) Au for 42,000 ounces of gold (Table 1-1). The reported MRE utilizes a lower gold cutoff of 0.003 oz/ton Au (0.10 g/t) for blocks flagged as argillic altered or as unaltered and a cutoff of 0.004 oz/ton Au (0.14 g/t) for blocks flagged as silicic altered.

The 2022 Pan Mine MRE was initially completed with an effective database, topographic and model date of September 30, 2022. The Pan Mine MRE was then further depleted for mining from September 30, 2022 to December 31, 2022, therefore the effective date of the MRE herein is December 31, 2022.

Table 1-1: Pan Mine Edge-diluted Resource Estimate Constrained within the '\$1700/oz' Pit Shell for Gold Specific to Area (effective date of December 31, 2022)

| Region  | Classification | Tons (tons)* | Tonnes(tonnes)* | Au Grade<br>(oz/ton) | Au Grade<br>(g/t) | Contained Au (troy ounces)* |
|---------|----------------|--------------|-----------------|----------------------|-------------------|-----------------------------|
|         | Measured*      | 3,000        | 2,000           | 0.012                | 0.41              | 0                           |
| Nameth  | Indicated*     | 11,470,000   | 10,405,000      | 0.010                | 0.34              | 113,400                     |
| North   | M&I*           | 11,472,000   | 10,408,000      | 0.010                | 0.34              | 113,500                     |
|         | Inferred*      | 709,000      | 643,000         | 0.013                | 0.44              | 9,100                       |
|         | Measured*      | 32,000       | 29,000          | 0.020                | 0.57              | 500                         |
| Control | Indicated*     | 6,396,000    | 5,803,000       | 0.010                | 0.33              | 62,400                      |
| Central | M&I*           | 6,428,000    | 5,831,000       | 0.010                | 0.34              | 62,900                      |
|         | Inferred*      | 442,000      | 401,000         | 0.010                | 0.36              | 4,700                       |
|         | Measured*      | 10,000       | 9,000           | 0.017                | 0.57              | 100                         |
| Courth  | Indicated*     | 19,337,000   | 17,542,000      | 0.010                | 0.33              | 182,300                     |
| South   | M&I*           | 19,347,000   | 17,551,000      | 0.010                | 0.33              | 182,500                     |
|         | Inferred*      | 2,427,000    | 2,202,000       | 0.012                | 0.40              | 28,200                      |
|         | Measured*      | 44,000       | 40,000          | 0.016                | 0.55              | 700                         |
| Total   | Indicated*     | 37,203,000   | 33,750,000      | 0.010                | 0.33              | 358,200                     |
| Total   | M&I*           | 37,247,000   | 33,790,000      | 0.010                | 0.33              | 358,900                     |
|         | Inferred*      | 3,578,000    | 3,246,000       | 0.012                | 0.40              | 42,000                      |

Source: APEX, 2022

#### \*Notes:

The updated 2022 MRE shows a 16% decrease (68,500 gold ounces) in Measured and Indicated Resources to 358,900 gold ounces versus the 2020 MRE that utilized a June 30, 2020 topographic surface (SRK 2021). The approximate calculated mining depletion for the period of June 30, 2020 to December 31, 2022 is a little over 13 million tons and about 170,000 oz Au, the vast majority of which were Measured and Indicated Resources from the 2020 MRE. The 2021 to 2022 drilling has effectively resulted in the addition of Measured and Indicated Resources equivalent to approximately 100,000 gold ounces versus the 170,000 gold ounces that have been mined in the period from June 30, 2020 to

<sup>&</sup>lt;sup>1</sup> CIM (2014, 2019) guidelines, standards and definitions were followed for estimation and classification of mineral resources.

<sup>&</sup>lt;sup>2</sup> The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues

<sup>&</sup>lt;sup>3.</sup> Resources are stated as contained within a constrained pit shell; pit optimization was based on an assumed gold price of US\$1,700/oz, Silicic (hard) ore recoveries of 60% for Au and an Argillic (soft) ore recovery of 80% for Au, an ore mining cost of US\$2.09/st, a waste mining cost of \$1.97/st, an ore processing and G&A cost of US\$3.13/st, and pit slopes between 45-50 degrees;

<sup>&</sup>lt;sup>4</sup> Resources are domain edge diluted and reported using a minimum internal gold cut-off grade of 0.003 oz/st Au (0.10 g/t Au).
<sup>5</sup> Measured and Indicated Mineral Resources presented are inclusive of Mineral Reserves. Inferred Mineral Resources are not included in Mineral Reserves.

<sup>&</sup>lt;sup>6.</sup> Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability. There has been insufficient exploration to define the inferred resources tabulated above as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration. There is no certainty that any part of the Mineral Resources estimated will be converted into Mineral Resources.

<sup>7.</sup> Numbers in the table have been rounded to reflect the accuracy of the estimate and may not sum due to rounding.

<sup>&</sup>lt;sup>8</sup> Mr. Michael Dufresne, M.Sc., P. Geol., P. Geo. of APEX Geoscience Ltd. is responsible for reviewing and approving the Pan mine open pit Mineral Resource Estimate. Mr. Dufresne is a Qualified Person ("QP") as set out in NI 43-101.

December 31, 2022. An additional Inferred Resource of 42,000 gold ounces has been estimated at the Pan Mine, that with continued drilling may provide additional Measured and/or Indicated gold ounces.

The 2022 Pan Mine MRE has been classified as comprising Measured, Indicated, and Inferred Resources according to recent CIM definition standards. The classification of the Pan Mine resources was based on geological confidence, data quality and grade continuity. All reported Mineral Resources occur within a pit shell optimized using values of US\$1,700 per ounce for gold. Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability. The MRE is partially (domain edge) diluted and is inclusive of Reserves.

#### 1.5 Mineral Reserve Estimate

The conversion of mineral resources to ore reserves required accumulative knowledge achieved through Lerchs-Grossmann (LG) pit optimization, detailed pit design, and associated modifying parameters. Reserve estimation was performed using Hexagon's MinePlan® software and applies to the full Calibre Pan resource. Detailed pit slope design, access, haulage, and operational cost criteria were applied in this process for all mining areas. The Project was built in U.S. units and all metal grades are in oz/ton.

The orientation, proximity to the topographic surface, and geological controls of the GRP Pan mineralization support mining of the ore reserves with open pit mining techniques. To calculate the mineable reserve, pits were designed following an optimized LG pit based on a US\$1,600/oz Au sales price. The quantities of material within the designed pits were calculated using a base Cutoff Grade (CoG) of 0.004 Au oz/ton for the argillized and unaltered material and a base CoG of 0.006 Au oz/ton for the silicified material. CoG calculation is based on the static US\$1,600/oz Au sales price utilized for ore reserves in this study.

The Mineral Reserves for the Pan Mine are presented in Table 1-2.

Table 1-2: Pan Project Mineral Reserve Estimate as of December 31, 2022

| Classification                             | Mass<br>(000's st) | Grade<br>(oz/st Au) | Grade<br>(g/t Au) | Metal Contained (koz Au) |
|--------------------------------------------|--------------------|---------------------|-------------------|--------------------------|
| Proven                                     | 13                 | 0.015               | 0.499             | 0.2                      |
| Probable                                   | 21,799             | 0.011               | 0.368             | 234                      |
| Proven and Probable                        | 21,812             | 0.011               | 0.368             | 234                      |
| Probable Leach Pad Inventory (recoverable) |                    |                     |                   | 30                       |
| Total Proven and Probable                  |                    |                     |                   | 264                      |

Source: SRK, 2023

<sup>1.</sup> Reserves stated in the table above are contained within an engineered pit design following the US\$1,600/oz Au sales price Lerchs-Grossmann pit. Date of topography is December 31, 2022;

<sup>&</sup>lt;sup>2</sup> In the table above and subsequent text, the abbreviation "st" denotes US short tons;

<sup>3.</sup> Mineral Reserves are stated in terms of delivered tons and grade before process recovery. The exception is leach pad inventory, which is stated in terms of recoverable Au ounces;

<sup>&</sup>lt;sup>4.</sup> Costs used include a mining cost of US\$2.11/st and an ore processing and G&A cost of US\$3.88/st;

<sup>5.</sup> Reserves for argillic (soft) and unaltered ore are based on a minimum 0.004 oz/st Au CoG, using a US\$1,600/oz Au sales price and an Au recovery of 80%;

- 6. Reserves for silicic (hard) ore are based on a minimum 0.006 oz/st Au CoG, using a US\$1,600/oz Au sales price and an Au recovery of 60%;
- 7. Mineral Reserves stated above are contained within and are not additional to the Mineral Resource, the exception being leach pad inventory; and,
- 8. Numbers in the table have been rounded to reflect the accuracy of the estimate and may not sum due to rounding.

### 1.6 Mining Methods

The Pan mine is a conventional hard rock open pit mine that uses a contractor to drill, blast, load, haul, and provide support equipment. Mining is performed on 20 ft benches using CAT 992 loaders, CAT 777 haul trucks, and conventional drill and blast activities. The mine is permitted to crush and place up to 14,000 tons per day on the heap leach pad. In practice, ore is delivered to the crusher at a rate of 12,325 tons per day, then placed on the heap leach pad using the mining fleet. The additional 1,675 tons per day are placed as ROM material. For this report, the QP limited the ore mining rate to the 12,325 tons per day that the crusher has historically achieved. It is assumed that the ore mined after April 2024 will be crushed and agglomerated to maintain permeability in the heap leach pad.

Due to the argillic alteration present in the ore, there is potential to lose permeability in the heap if too much clay is placed at one time. To maintain permeability, ore is defined as either hard or soft based on alteration type by the ore control geologist, and a blend of 60% hard to 40% soft by weight is placed on the pad. For this mine plan, it was assumed that all planned ore flagged as argillic or unaltered would be considered soft, and silicic alteration would be considered hard. Based on the current resource model, the 60% hard to 40% soft ratio can only be maintained through March 2024. Starting in April 2024, SRK the OP has assumed the ore will be agglomerated and stacked with a radial stacker.

## 1.7 Recovery Methods

Approximately 14,000 stpd of ore at a 60:40 hard to soft ratio is mined from North and South Pan pits, crushed to -6" and combined with 3.5 lb/ton of lime in the truck bed. After primary crushing, blended material is loaded into trucks from the crushed stockpile, dumped on the top surface of the leach pad cell, and pushed over with a dozer. For ROM pad loading, trucks dump directly.

Ore is mined concurrently from both North and South Pan pits and trucked to the crushing facility. Properly blended hard and soft ore is crushed and trucked to the pad where barren solution is used in transfer sprays for dust control.

On an annual basis, Pan's consistent operating conditions and ability to achieve the target blend of hard to soft material has allowed the operation to steadily improve heap leach extractions since the crusher was installed. A recent review indicated gold extractions of 69% to 75% on this blend of material has been achieved.

Pan maintains a database of daily ore tonnes and grades since 2017. Using this database of results, constant gold extractions have been back calculated to determine heap pad performance. Current estimates of gold extractions are:

Hard material: 50% ROM 60% crushed to 6"Soft material: 75% ROM 80% crushed to 6"

Typical extractions (relative to ultimate recovery) for both material types are:

- Year 1 = 75.5%
- Year 2 = 13.1%
- Year 3 = 6.5%
- Year 4 = 3.0%
- Year 5 = 1.5%

Current practice is to maintain a blend of 60:40 hard to soft material, for both crushed and ROM heap leach pad feed. As discussed in Section 13, Pan's determination of hard versus soft is not well defined; historically described as Argillic vs. Silicified alteration, then changed to North vs. South pits and currently based on blasthole logging by a site geologist. While this might be sustained for short-term planning, it does not provide confidence the future mine plan can maintain the 60:40 target blend.

For accurate forecasting of future Pan heap leach pad performance, geometallurgical characterization of all Pan ore sources must be undertaken. This includes improved understanding of:

- CN/FA values versus material type and crushed size
- Effect of crushed size/ clay content on permeabilities under load

Better geometallurgical characterization may allow the target blend of hard: soft to be adjusted and accommodate the apparent shortage of soft material in the future. It is not known if some/all of the Unaltered alteration type can be considered soft material for blending purposes.

## 1.8 Project Infrastructure

The Project is a fully operational mine with infrastructure constructed by the previous operator and subsequently expanded by Calibre. The existing infrastructure includes electrical power supply and distribution, access roads, security fences and gates, water supply and storage, office buildings, assay laboratory, heap leach pad and mineral processing facilities. In addition to the existing infrastructure, there are plans for an expansion of the existing leach pad in 2024 and installing a belt agglomeration system in by the end of the 1st quarter of 2024.

## 1.9 Environmental Studies and Permitting

GRP maintains the requisite environmental permits and authorizations from federal agencies (e.g., U.S. Bureau of Land Management [BLM], U.S. Fish and Wildlife Service, and the Environmental Protection Agency) and Nevada state agencies (e.g., Nevada Division of Environmental Protection [NDEP], Nevada Division of Water Resources, and the Nevada Department of Wildlife).

GRP's predecessor, Midway, submitted the Pan Mine Plan of Operations and Reclamation Permit Application in October 2011 per 43 Code of Federal Regulations §3809. The Pan Mine is located on public land administered by the BLM; as such, the BLM was the lead environmental permitting agency following the BLM requirements. The proposed activities were analyzed under the National Environmental Policy Act (NEPA) via an environmental impact statement (EIS). The Pan Mine Project

Final Environmental Impact Statement (FEIS), Volume I & II, Case File NVN-090444 (BLM 2013) was made available November 22, 2013, and the Record of Decision (ROD) was signed December 23, 2013. The Pan Mine Plan of Operations and Reclamation Permit Application (2013 Plan) was authorized in December 2013. Construction at the mine began in January 2014.

Per Nevada Administrative Code 519A.350, GRP is required to file a reclamation surety with the NDEP or a federal land management agency, as applicable, to ensure that reclamation will be completed on privately owned and federal land. The 2022 Pan Mine reclamation cost estimate was calculated using the Nevada Standardized Reclamation Cost Estimator (SRCE) using Davis Bacon wage rates. The SRCE is an estimation tool for the calculation of bond amounts required to reclaim land that is no longer used for exploration, mining, or processing ore. The SRCE totals \$18,729,598 and was approved by both the BLM and the NDEP in 2022 for the Phase 1 disturbance of 2,393 acres.

Water appropriations are authorized by the Nevada Division of Water Resources. GRP leases about 1,200 acre-feet of water rights from KG Mining (Bald Mountain) Inc. for consumptive use.

GRP monitors surface and ground water and waste rock geochemistry per requirements in water pollution control permit NEV2012107; air emissions are monitored per the Class II air quality operating permit AP1041-3831.01. GRP maintains a surface area disturbance permit and a Mercury Operating Permit to Construct (AP1041-3302) that also has an emissions monitoring requirement.

As part of its off-site compensatory mitigation, GRP has contributed approximately \$1.7 million toward five years of greater sage-grouse study conducted by the U.S. Geological Survey (USGS). As provided in the FEIS, the mine operator receives a fifty percent credit for funding contributed to the USGS study toward any required off-site compensatory mitigation.

The Greater Sage-Grouse Offset Mitigation Implementation Plan Agreement (BLM 2021), developed in coordination with GRP and the NDOW, includes the following key components:

- Complete off-site mitigation of impacted priority habitat management area (PHMA) on a three to one basis:
- Complete off-site mitigation of permanently impacted general habitat management area (GHMA) on a two to one basis; and
- Off-site mitigation will be initiated within one year of ground disturbance and completed within 10 years of ground disturbance (BLM 2013).

The BLM calculated a cost per acre of \$419.67 for restoration treatment including monitoring. In January 2022, GRP issued a check to the BLM, Ely District, Bristlecone Field Office for \$178,611.55 for greater sage-grouse mitigation.

In 2021, GRP submitted an application to the U.S. Fish and Wildlife Service for an eagle take permit valid for 30 years until July 2051 due to the potential for incidental disturbance take associated with mining activities over the life of the mine. This permit is currently under review.

Environmental issues identified in the 2013 EIS completed for the mine are mitigated by the requirements of the ROD as described for each resource below. At the time of publication, known environmental issues had been addressed and mitigated, as required.

Internal reclamation and closure costs were also estimated using the reclamation bond cost estimate described in Section 20.14.1 and the 2022 Asset Retirement Obligation Estimate and Cost Model for Pan Mine (H&A 2023). The two models, which include LOM facilities, were reviewed and compared to approximate inputs generated for the mine plan. Reclamation and closure costs were estimated to be approximately \$17 million. This estimate is based on facilities that vary from the prior LOM facilities in the H&A models.

### 1.10 Capital and Operating Costs

### 1.10.1 Capital Cost Summary

The Pan Mine is constructed and is currently operating; historical data is used to estimate future capital requirements. For the purposes of this Technical Report all capital spent to date is considered a sunk cost. Additional capital is required to continue to operate through the remaining mine life. A crushing and conveying system (US\$6.5M) is required because a 60:40 ratio of hard to soft ore is not possible after the 1st quarter of 2024. An additional leach pad phase (\$US3.885M) is required to process the remaining mineral reserve. Reclamation, Closure (US\$17M) and Post Closure Monitoring (US\$0.675M), offset by (\$US6.5M) of bond recovery is estimated for closure. Sustaining capital is estimated to be (\$US0.480M) over 4 years.

The capital cost summary for the Project is presented in Table 1-3. A total LOM capital cost of (US\$22.2M).

**Table 1-3: Capital Cost Summary** 

| Description                                                      | Cost (US\$ 000's) |
|------------------------------------------------------------------|-------------------|
| Mine                                                             | 200               |
| Process                                                          | 6,500             |
| Leach pads                                                       | 3,885             |
| Reclamation & Closure and Post Closure Monitoring, Bond Recovery | 11,175            |
| Sustaining Capital                                               | 480               |
| Total                                                            | 22,240            |

Source: SRK, 2023

### 1.10.2 Operating Cost Summary

The operating cost summary for the Project is presented in Table 1-4. The mine is presently operating using a contractor for all mining activities. Operating costs are based on historical costs from the period of October 2021 through September 2022. Mining costs are developed based on the current mining contract to estimate hourly equipment rates. Hauling hours for mining are based on MinePlan® Schedule Optimizer (MPSO) Hexagon software that generates truck hours which are applied to contract equipment hourly rates. Drilling and loading hours are calculated from the mine schedule and historical cycle times. Hours for support equipment are based on an 11 shifts per week schedule, 52 weeks per year. Historical processing costs are used and split into fixed and variable rate categories. Fixed process costs are primarily salary and wages. Variable costs are based on a cost per ton of ore placed. The variable cost

remains the same on a unit cost basis until the end of the first quarter of 2024 when the crushing and belt agglomeration system is in place. Lime addition is replaced with cement addition; increasing the cost US\$0.03/ton-ore. Rehandle cost is reduced by 50 percent. General and administrative costs are assumed to remain fixed until mining ends. One additional year of processing is required following mining activities and the process and administration costs are reduced in 2028. Administrative costs include the management functions required for the operation.

**Table 1-4: Operating Cost Summary** 

| Operating Costs | (US\$ 000's) | US\$/ton-ore |
|-----------------|--------------|--------------|
| Mining          | 148,763      | 6.820        |
| Processing      | 78,178       | 3.584        |
| G&A             | 29,914       | 1.371        |
| Total Operating | 256,855      | 11.776       |

Source: SRK, 2023

### 1.11 Economic Analysis

Under NI 43-101 rules, producing issuers may exclude information required in Section 22. Economic Analysis on properties currently in production, unless the Technical Report includes a material expansion of current production. The Pan mine is currently in production, and material expansion is not being planned. SRK completed an economic analysis, and the outcome is a positive cash flow that supports the statement of mineral reserves.

#### 1.12 Conclusions and Recommendations

Based on the assumptions outlined herein, the Pan Mine generates a positive net present value using a discount factor of 5% at a US\$1,600gold price. The project currently operates with a contract miner who has operated since the inception of the project and the process plant operated since 2015. Production and cost data are derived from one of year of operation for the period from October 2021 through September 2022; Based on current goods and services prices the estimated cost projections are accurate, as long as projected production rates are maintained.

A number of recommendations have been made by various QPs to improve various aspects of the project:

- Further exploration drilling is warranted.
- Additional refinement to the mine plan presents an opportunity to improve the economic projections of the operation.
- A geotechnical evaluation is recommended to ascertain if slopes can be steepened.
- A geometallurgical to characterize hard and soft material is recommended.

The cost for the exploration drill program, geotechnical program, and geometallurgical characterization program are shown in Table 1-5.

**Table 1-5: Recommended Work Plan** 

| Area                                                       | Cost Estimate (USD,000) |
|------------------------------------------------------------|-------------------------|
| Exploration drilling program                               | 4,000                   |
| Mine plan                                                  | 100                     |
| Geotechnical program (excluding drill program)             | 400                     |
| Geometallurgical characterization of hard vs soft material | 500                     |
| Total                                                      | 5,000                   |

Source: SRK, 2023

### 2 Introduction

### 2.1 Terms of Reference and Purpose of the Report

This report was prepared as a National Instrument 43-101 (NI 43-101) Technical Report on Resources and Reserves (Technical Report) for Calibre Mining Corp. (Calibre) on the Pan Gold Project (Pan or the Project). This report was prepared by, SRK Consulting (U.S.), Inc. (SRK) and Apex Geoscience Ltd. (APEX).

The Pan Mine is owned by GRP Pan, LLC d/b/a Fiore Gold Pan Mine (GRP), which is owned by Fiore Gold US (Inc), a subsidiary of Fiore Gold BC (Ltd), and finally a subsidiary of Calibre Mining Corp.

The quality of information, conclusions, and estimates contained herein is consistent with the level of effort involved in SRK's services, based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this report. This report is intended for use by Calibre subject to the terms and conditions of its contract with SRK and relevant securities legislation. The contract permits Calibre to file this report as a Technical Report with Canadian securities regulatory authorities pursuant to NI 43-101, Standards of Disclosure for Mineral Projects. Except for the purposes legislated under provincial securities law, any other uses of this report by any third party are at that party's sole risk. The responsibility for this disclosure remains with Calibre. The user of this document should ensure that this is the most recent Technical Report for the property as it is not valid if a new Technical Report has been issued.

This report provides Mineral Resource and Mineral Reserve estimates, and a classification of resources and reserves prepared in accordance with the Canadian Institute of Mining, Metallurgy and Petroleum Standards on Mineral Resources and Reserves: Definitions and Guidelines, May 10, 2014 (CIM, 2014).

#### 2.2 Qualifications of Consultants

The Consultants preparing this technical report are specialists in the fields of geology, exploration, Mineral Resource and Mineral Reserve estimation and classification, open pit mining, geotechnical, environmental, permitting, metallurgical testing, mineral processing, processing design, capital and operating cost estimation, and mineral economics.

None of the Consultants or any associates employed in the preparation of this report has any beneficial interest in Calibre. The Consultants are not insiders, associates, or affiliates of Calibre. The results of this Technical Report are not dependent upon any prior agreements concerning the conclusions to be reached, nor are there any undisclosed understandings concerning any future business dealings between Calibre and the Consultants. The Consultants are being paid a fee for their work in accordance with normal professional consulting practice.

The following individuals, by virtue of their education, experience and professional association, are considered Qualified Persons (QP) as defined in the NI 43-101 standard, for this report, and are members in good standing of appropriate professional institutions. QP certificates of authors are provided in Appendix A. The QP's are responsible for specific sections as follows:

## 2.3 QP Responsibilities

Each QP listed in this report is responsible for specific sections. The list of QP's and their corresponding sections are listed in Table 2-1.

Table 2-1: QP Responsibilities

| Qualified Person                        | Company | Expertise             | Sections Responsible For                                                               |
|-----------------------------------------|---------|-----------------------|----------------------------------------------------------------------------------------|
| Michael Dufresne, M.Sc., P.Geol, P.Geo. | APEX    | Mineral<br>Resources  | 1.1, 1.2, 1.4, 4 (except 4.4), 5, 6, 7, 8, 9, 10, 11, 12, 14, 23, 24, 25.1, 25.2, 26.1 |
| Valerie Sawyer, RM-SME                  | SRK     | Environmental         | 1.9, 4.4, 20, 25.5                                                                     |
| Justin Smith, B.Sc., P.E., RM-SME       | SRK     | Mining<br>Engineering | 1.5, 1.6, 2, 3, 15, 16 (Except 16.2.1), 24, 25.3, 26.2                                 |
| Andy Thomas, M.Eng., Peng               | SRK     | Rock<br>Mechanics     | 16.2.1, 26.3                                                                           |
| Michael lannacchione, B.Sc., MBA, P.E.  | SRK     | Mine<br>Economics     | 1.8, 1.10, 1.11, 1.12, 18, 19, 21, 22, 25.6, 25.7, 26.5                                |
| Adrian Dance, PhD, Peng, FAusIMM        | SRK     | Metallurgy            | 1.3, 1.7, 13, 17, 25.4, 26.1, 26.4                                                     |

Source: SRK 2023

## 2.4 Details of Inspection

Site inspections were conducted by all of the QPs and several supporting staff. Details of these visits are provided in Table 2-2.

**Table 2-2: Site Visit Participants** 

| Personnel               | Company | Expertise             | Date(s) of Visit                                | Details of Inspection                                                                                                                                                   |
|-------------------------|---------|-----------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Michael Dufresne        | APEX    | Mineral<br>Resources  | September 1, 2020                               | Tour of haul roads and the north and south pits, inspection of alteration, structure and mineralization in benches and walls. Inspection and checking of drill collars. |
| Warren Black            | APEX    | Mineral<br>Resources  | Sep 22 to Oct 2, 2019,<br>Oct 19 to Nov 9, 2019 | Validated collar locations, sampling procedures, and QAQC procedures for the 2019-2020 drill program. Toured all pits, reviewed geology with staff.                     |
| Valerie Sawyer          | SRK     | Environmental         | January 14, 2014                                | Pre-construction landforms, met with permitting staff                                                                                                                   |
| Justin Smith            | SRK     | Mining<br>Engineering | December 6, 2022                                | Pit, haul roads, heap leach,<br>waste facilities, processing<br>facilities                                                                                              |
| Michael<br>Iannacchione | SRK     | Mine<br>Economics     | September 10, 2020                              | Pit, haul roads, heap leach,<br>waste facilities, processing<br>facilities                                                                                              |
| Andy Thomas             | SRK     | Rock<br>Mechanics     | December 6, 2022                                | Pit, haul roads, heap leach,<br>waste facilities, processing<br>facilities                                                                                              |
| Adrian Dance            | SRK     | Metallurgy            | December 6, 2022                                | Pit, haul roads, heap leach, waste facilities, processing facilities                                                                                                    |

Source: SRK, 2023

#### 2.5 Sources of Information

The sources of information include data and reports supplied by Calibre personnel as well as documents cited throughout the report and referenced in Section 27.

#### 2.6 Effective Date

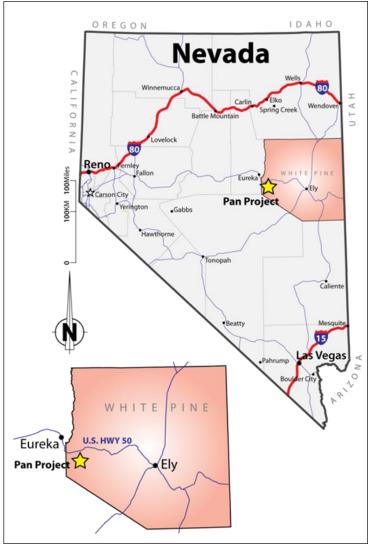
The effective date of this report is December 31, 2022.

### 2.7 Units of Measure

The US System for weights and units has been used throughout this report. Tons are reported in short tons of 2,000 lb. All currency is in U.S. dollars (US\$) unless otherwise stated.

## 3 Reliance on Other Experts

The Consultant's opinion contained herein is based on information provided to the Consultants by Calibre throughout the course of the investigations. SRK has relied upon the work of other consultants in the project areas in support of this Technical Report.

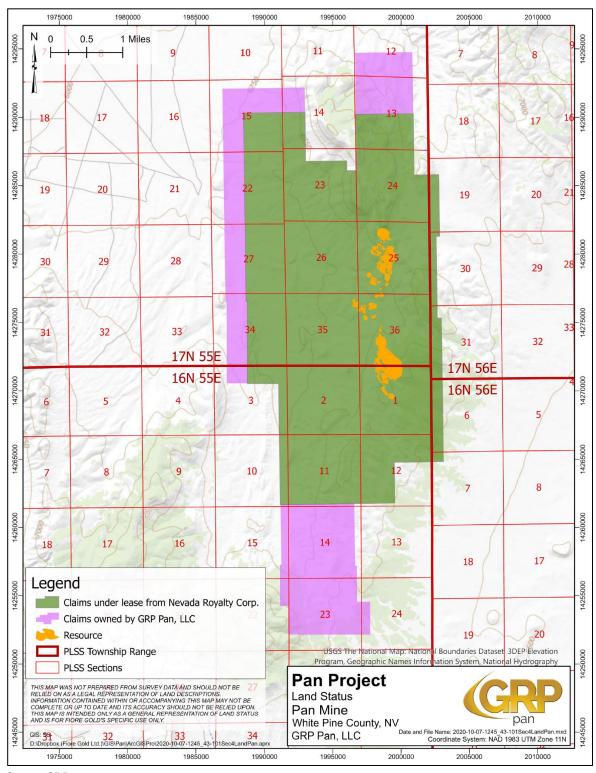

The Consultants used their experience to determine if the information from previous reports was suitable for inclusion in this technical report and adjusted information that required amending. This report includes technical information, which required subsequent calculations to derive subtotals, totals and weighted averages. Such calculations inherently involve a degree of rounding and consequently introduce a margin of error. Where these occur, the Consultants do not consider them to be material.

These items have not been independently reviewed by SRK and SRK did not seek an independent legal opinion of these items.

## 4 Property Description and Location

## 4.1 Property Location

The Pan property is located in the northern Pancake Range in White Pine County, Nevada, 22 miles southeast of the town of Eureka and 50 miles west of Ely, as shown in Figure 4-1. The geographic center of the property is located at 39°17'N latitude and 115°44'W longitude, and the primary zones of mineralization on the property are located in Sections 25 and 36, Township 17 North, Range 55 East (T17N, R55E) and Section 1, T16N, R55E, Mount Diablo Base and Meridian (MDBM).




Source: GRP, 2017

Figure 4-1: Project Location Map

#### 4.2 Mineral Titles

The Project claim boundary encompasses approximately 10,673 acres, all located within surveyed townships. The Pan property consists of 563 contiguous, active, unpatented lode mining claims covering portions of Sections 12 through 15, 22 through 27, and 34 through 36, T17N, R55E; portions of Sections 19, 30, and 31, T17N, R56E; portions of Sections 1 through 3, 10, through 12, 14, 15, and 22 through 24, T16N, R55E; and portions of Sections 6 and 7, 16N, R56E, as shown in Figure 4-2. A complete listing of the claims on file with the BLM and White Pine County is included in Appendix B. The U.S. Department of the Interior – BLM, Ely District Office – Bristlecone Field Office administers the federal public lands within the Project boundary. No private, United States Department of Agriculture (USDA) – Forest Service, or state-owned lands are located within the Plan Area or mineral materials sales site.



Source: GRP, 2020

Figure 4-2: Land Status Map

#### 4.2.1 Nature and Extent of Issuer's Interest

The right of way permit #200571 covers the exit off of Highway 50. Permit #200571 is provided in Appendix C. The remainder of the Pan access road is included in the Plan of Operations as part of the mining operation.

Unpatented lode mining claims are kept active with annual maintenance fees paid to the BLM and White Pine County by September 1<sup>st</sup> of each year.

GRP Pan, LLC must incur a minimum of US\$65,000 per year work expenditures during the term of the mining lease from Nevada Royalty Corp (NRC).

# 4.3 Royalties, Agreements and Encumbrances

GRP Minerals Corp. and its subsidiaries acquired various mineral properties, including the Pan Assets, on May 17, 2016, pursuant to an Asset Purchase Agreement (APA) with subsidiaries of Midway Gold Corp., which was approved and authorized by the United States Bankruptcy Court for the District of Colorado, in Midway Gold US Inc., et al, Case No. 15-16835 MER. On May 13, 2016, the Bankruptcy Court entered the Revised Order under 11 U.S.C §§ 105, 363, and 365 and Fed. Bankr. P. 2002, 6004, 6006, and 9014 (I) Approving (A) the Sale of Substantially All of the Debtor Assets Pursuant to the Asset Purchase Agreement with GRP Minerals, LLC and Related Agreements Free and Clear of Liens, Claims, Encumbrances and Other Interests and (B) the Assumption and Assignment of Certain Executory Contracts and Unexpired Leases in Connection with the Sale; and (II) Granting Related Relief.

Effective May 17, 2016, the Pan Mineral Lease dated January 7, 2003 was assigned and conveyed to GRP Pan, LLC. Nevada Royalty Corp. (NRC), successor in interest to the Lyle F. Campbell Trust, is the Lessor and owner of the claims subject to the Lease. As of November 22, 2013, NRC assigned to Orion Royalty Company, LLC, NRC's right to receive advance minimum and production royalty payments under the Pan Mineral Lease. On or before January 5 of each year, GRP Pan, LLC must pay an advance minimum royalty of the greater of US\$60,000 or the US dollar equivalent of 174 oz of gold valued by the average of the London afternoon fixing for the third calendar quarter preceding January 1 of the year in which the payment is due. All minimum advance royalties will be creditable against a sliding scale gross production royalty of between 2.5% and 4% as shown in Table 4-1.

Ten claims are also subject to an overriding 1% NSR payable to Americomm Resources Corporation. They are PA 8A, PA 10, PA 12-18, and PA 49A.

There are 134 additional unpatented claims within the Pan property that are without royalty burden and are not subject to the NRC area of interest. They are the 10 PC, 56 NC, 41 GWEN, 26SP and 1 REE claims.

100% of the advanced minimum royalty paid within a calendar year can be applied to that same year's production royalty due. If the total production royalty due in any calendar year exceeds the advance minimum royalty paid within that year, GRP Pan, LLC can credit all un-credited advance minimum royalties paid in previous years against 50% of the gross production royalty due.

**Table 4-1: Pan Royalty Schedule** 

| Price of Gold (US\$)              | Percentage |
|-----------------------------------|------------|
| To and including \$340.00/oz.     | 2.5%       |
| From \$340.00/oz. to \$450.00/oz. | 3.0%       |
| \$450.00/oz. and greater          | 4.0%       |

Source: GRP, 2017

# 4.4 Environmental Liabilities and Permitting

#### 4.4.1 Environmental Liabilities

Mining activity has taken place in the general region since 1876, but mining of the Pan deposit had not occurred prior to 2015. At the time of publication, there are no known environmental issues. There are no other known significant environmental factors or risks to continued operations and closure.

#### 4.4.2 Required Permits and Status

The majority of the required federal, state, and local permits for construction, operations, and reclamation of the Pan Mine were acquired by Midway, GRP's predecessor. Since 2017, GRP has successfully transferred the permits to their control. GRP has all of the requisite and necessary permits necessary to construct, operate, and reclaim the Pan Mine. Table 4-2 provides a list of the major permits and authorizations and their status as of January 2023. All permits are issued to "GRP" unless otherwise noted in Table 4-2.

Table 4-2: Status of Major Permits, Authorizations, and Licenses as of January 2023

| Permit                                                                              | Agency                                                                       | Permit Number                                         | Status                                                                   |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|--|
|                                                                                     | Federal Pe                                                                   | rmits and Authorizations                              |                                                                          |  |
| Notification of Commencement of Operations                                          | Mine Safety and Health Administration                                        | 26-02755                                              | Active                                                                   |  |
| Record of Decision and approved 2013 Plan of Operation and subsequent modifications | BLM                                                                          | NVN-090444                                            | Active                                                                   |  |
| Mineral Materials Negotiated Sale (Borrow)                                          | <del></del>                                                                  | NVN-089672                                            | Active                                                                   |  |
| Programmatic Agreement (1)                                                          | BLM/state Historic Preservation Office                                       | NVN-090444                                            | Active                                                                   |  |
| Eagle Take Permit                                                                   | USFWS                                                                        | Currently under review                                | Currently under review                                                   |  |
| Hazardous Waste ID (RCRA)                                                           | USEPA/NDEP/Department of Energy                                              | LQG NVR 000 089 227                                   | Active                                                                   |  |
| FCC Radio License                                                                   | Federal Communications Commission                                            | Reg. #0023652175 Call Sign WQUC703                    | Active                                                                   |  |
| Explosives Permit                                                                   | Bureau of Alcohol, Tobacco, Firearms, and Explosives                         | #9-NV-033-33-1B-00416                                 | Active                                                                   |  |
| 0047.0                                                                              | D (1)                                                                        | Midway Gold Corporation (MDW) Pan Facility ID 4133675 | A .:                                                                     |  |
| CSAT Security Threat                                                                | Department of Homeland Security                                              | Facility survey ID 8022095 (dated Dec. 30, 2014)      | - Active                                                                 |  |
|                                                                                     |                                                                              | State Permits                                         |                                                                          |  |
| Air Quality Operating Permit -Class I                                               |                                                                              | AP1041-3674                                           | Active Class I (Expires 11/28/2027)                                      |  |
| Surface Area Disturbance Permit                                                     | NDED Durant of Air Dellution Control                                         |                                                       |                                                                          |  |
| Air Quality Operating Permit – Class II                                             | NDEP Bureau of Air Pollution Control                                         | AP1041-3831                                           | Active Class II (Expires 07/07/2027)                                     |  |
| Air Quality Permit – Mercury Operating Permit to Construct                          |                                                                              | AP1041-3302                                           | Active (mercury permit [Lifetime])                                       |  |
| Reclamation Permit                                                                  | NDEP Bureau of Mining Regulation and Reclamation                             | 350                                                   | Active                                                                   |  |
| Water Pollution Control Permit                                                      | NDEF Buleau of Milling Regulation and Reclamation                            | NEV2012107                                            | Active (Expires 04/04/2023; renewal application submitted on 10/06/2022) |  |
| Dam Safety Permit                                                                   | Nevada Division of Water Resources                                           | J-679                                                 | Active                                                                   |  |
| Water Appropriation                                                                 | Nevada Division of Water Resources                                           | Permits 81667 - 81669, 84743 - 84746                  | Leased from KG Mining (Bald Mountain) Inc.                               |  |
| Encroachment Permit                                                                 | Nevada Department of Transportation                                          | Occupancy Permit No. 200571                           | Active                                                                   |  |
| Industrial Artificial Pond Permit                                                   | Nevada Department of Wildlife                                                | S407100S                                              | Active (Expires 06/20/2027)                                              |  |
| Stormwater Permit                                                                   | NDED Dones of Water Dellution Control                                        | MSW-42137                                             | Active                                                                   |  |
| Commercial Septic System Construction Permit                                        | NDEP Bureau of Water Pollution Control                                       | GNEVOSDS09-S-0397                                     | Active                                                                   |  |
| Landell Daniel                                                                      | NDED Down of Contribute Materials Management                                 | SW 539                                                | Antina                                                                   |  |
| Landfill Permit                                                                     | NDEP Bureau of Sustainable Materials Management                              | SW1762                                                | Active                                                                   |  |
|                                                                                     | N                                                                            | 5-5427-01 (Admin)                                     |                                                                          |  |
| Liquid Petroleum Gas (LPG) Licenses                                                 | Nevada Board for the Regulation of Liquefied Petroleum Gas                   | 5-5427-02 (ADR)                                       | Active                                                                   |  |
| Potable Water "non-transient non-community water system"                            | NDEP Bureau of Safe Drinking Water                                           | WP-1142-NT-NTNC                                       | Active                                                                   |  |
| Occupancy Permit                                                                    | State of Nevada Fire Marshall                                                | N/A                                                   | Active                                                                   |  |
| Mine Safety                                                                         | Nevada Department of Business and Industry, Division of Industrial Relations | Mine ID 26-02755                                      | Active                                                                   |  |

Source: SRK, 2023

<sup>(1)</sup> Also signed by Mt. Wheeler Power Company, Te-Moak Tribe of Western Shoshone Tribe, Duckwater Shoshone Tribe, and the Lincoln Highway Association, Nevada.

# 4.5 Other Significant Factors and Risks

At the time of publication, no significant factors and risks related to mineral title, royalties, agreements, encumbrances, existing environmental liabilities or permits to construct, operate or close the operation are known.

# 5 Accessibility, Climate, Local Resources, Infrastructure and Physiography

Section 5 is extracted from Gustavson (2015) report. Standardizations have been made to suit the format of this report. Changes to the text are indicated by the use of brackets [] or in sentences containing "SRK".

# 5.1 Topography, Elevation and Vegetation

The Pan property is located within the rolling hills of the northernmost portion of the Pancake Range. The terrain is gentle to moderate throughout most of the project area, with no major stream drainages. Elevation ranges from 6,400 to 7,500 ft above mean sea level (amsl). Local vegetation includes Pinyon-Juniper woodlands broken by open areas of sagebrush and grass. No springs are known to exist on the property.

### 5.2 Accessibility and Transportation to the Property

Access to the Pan property is via a gravel road that intersects US Highway 50 approximately 17 miles southeast of Eureka, Nevada. It is approximately 5 miles by road from US 50 to the Pan Project site. The road is constructed as a gravel embankment and has been constructed specifically for the Pan Project. The property is accessible year-round, but weather conditions occasionally make access and on-site travel difficult during the winter months.

# 5.3 Climate and Length of Operating Season

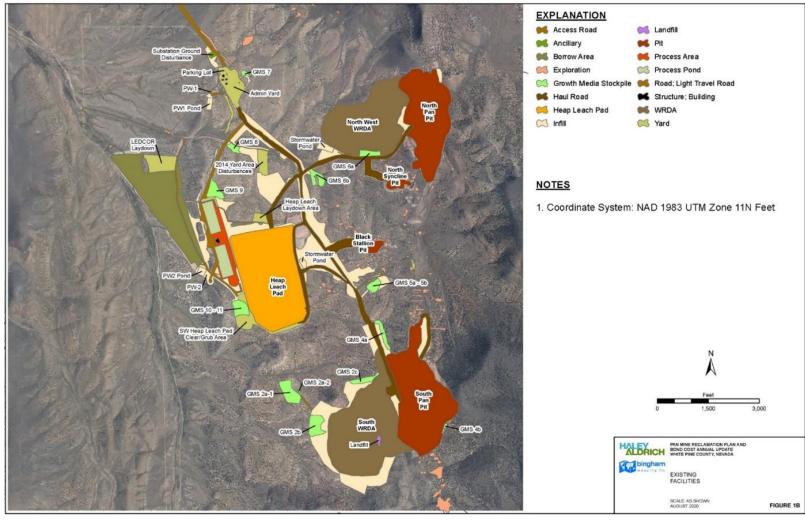
The local climate is typical for the high desert of east-central Nevada and the Basin and Range province. Climate data collected in Eureka, Nevada between 1997 and 2008 reports average annual precipitation of 8.1 inches, and average temperatures ranging from 11°F in the winter to 91°F in the summer (Western Regional Climate Center, 2009). Mining and exploration can be conducted year-round, but snow may cause delays in overland travel during the winter months.

# 5.4 Sufficiency of Surface Rights

The surface rights as described in Section 4.2 are sufficient to conduct exploration and mining operations as currently planned for the Pan deposit. The Pan Project is wholly located on and operations will be contained within Calibre land holdings.

# 5.5 Infrastructure Availability and Sources

The town nearest to the project site, Eureka, Nevada, hosts a population of 610 according to 2010 US Census data. Greater Eureka County and White Pine County host area populations of 1,987 and 10,030 respectively, though population is centered primarily in Eureka and Ely, Nevada. Elko, Nevada,


population of 18,297, is the nearest major city to the project site and is located approximately 110 miles to the north by road.

Logistical support is available in Eureka, Ely, and Elko, all of which currently support large open pit mining operations. The Ruby Hill Mine near Eureka has had recent operations (2020) and the Bald Mountain Mine, approximately 50 miles north of Pan, is currently being operated by Kinross. Robinson Nevada Mining Company operates the Ruth Copper pit near Ely, and large-scale mining by Barrick and Newmont Mining Corporation is ongoing near Elko and Carlin, Nevada to the north. Mining personnel and resources for operations at Pan have commuted from Eureka, White Pine, and Elko Counties.

Demand for skilled and technical labor has increased recently in central Nevada and some short-term operational difficulties could be encountered due to staff shortages.

Mine construction began in January 2014 and continued until operations were ceased in 2015. Figure 5-1 shows the current layout of the facilities at the Pan Mine. Both the north and south pits are completely opened up for mining activities. All required facilities are currently constructed, except for a planned heap leach pad expansion.

Detailed descriptions of existing and planned infrastructure are in Section 18.



Source: GRP, 2020

Figure 5-1: Existing Project Infrastructure

# 6 History

The Pan property is located in the loosely-defined Pancake District of east-central Nevada. The district was first organized in 1870, when silver ore was discovered approximately 10 miles to the southwest at Pogue's Station (MDA, 2005, Smith, 1976). Occurrences of lignite near Pancake Summit were briefly exploited from 1872-1877, with only minor production (Smith, 1976). During the 1870s, the Chainman Sandstone was also quarried from at least two localities in the District, for furnace lining at the Eureka smelter (Smith, 1976). There is no historic gold or silver mining activity on the Pan property.

### 6.1 Prior Ownership and Ownership Changes

Mr. Lyle Campbell discovered the Pan deposit while prospecting in 1978, when he encountered gold-bearing jasperoid, now referred to as Campbell Jasperoid. Mr. Campbell staked 147 original unpatented mining claims and transferred ownership of the claims to the LFC Trust in 1986. The LFC Trust was bought out in 2008 by Gold Standard Royalty (Nevada) Inc., which merged with, and is now owned by, Nevada Royalty Corp. Since 1978, numerous claims have been added and released from the Pan claim block. Between 1978 and 1993, several exploration companies leased the Pan claims and completed drilling programs. The Project was dormant from 1994 to 1998. Mr. Campbell passed away in 1998 and the LFC Trust continued to manage the Pan property until 2008. Exploration began again in 1999, starting with Latitude Minerals Corporation, then Castleworth Ventures, which became Pan Nevada Gold Corporation, and was acquired by Midway Gold Corp. in 2007.

Midway added unpatented claims to the land position to assemble the current land package. In 2016, GRP acquired the assets and mineral leases held by Midway in the Asset Purchase Agreement, as described in Section 4.3. GRP was acquired by Calibre Mining Corp. in 2021.

# 6.2 Exploration and Development Results of Previous Owners

Exploration on the Property has been conducted by several companies since 1978, and is summarized below.

sampling, and an induced polarization geophysical survey. Alta Bay initiated studies in support of mining development, including an archaeological survey, additional metallurgical test work, and preliminary mineral reserve estimations and mine designs.

- Alta Gold completed exploration drilling in 1992. Drilling results were reported, but the associated holes have not been validated and are not included in the current drill hole database.
- In 1993, Southwestern completed several reverse circulation holes. The associated drill hole collars have been identified in the field, but no other information has been located to validate these holes. These holes are not included in the current database. Drilling completed nearby in 2007 could not confirm the reported results.
- Between 1999 and 2001, the Latitude Degerstrom joint venture conducted geologic mapping and outcrop and soil sampling, as well as drilling and metallurgical testing. Latitude drilling programs focused primarily on North and South Pan mineralization, but also resulted in the discovery of mineralization in the Syncline and Black Stallion target areas of Central Pan. Latitude terminated the

joint venture with Degerstrom in mid-2001, and joint ventured the project with Metallica later that year. From LFC Trust files, it appears that Metallica focused on thermal imagery and lineament study of satellite data over the Pan area. No additional subsurface exploration work was completed by Metallica.

- Castleworth Ventures. Inc. completed exploration drilling and conducted geologic mapping, surface sampling, metallurgical test work, and resource estimation between 2003 and 2006.
- Between 2007 and 2015, Midway completed 287 holes, of which 260 were reverse circulation and 27 diamond core drill holes for a total of 136,507 ft. Drilling efforts focused on expanding known mineralization, but also included confirmation drilling, core drilling for metallurgical samples, and exploration drilling in several potential target areas on the Pan property. Midway drilled seven water supply or monitoring wells in 2012. These were logged for geology, but not assayed and are not included in the drill hole database. In addition to exploration drilling, Midway completed geologic mapping, soil and outcrop sampling, and a gravity survey.
- Midway began construction of the Pan Mine in February 2014. Mining was initiated in October 2014 and heap leaching was initiated in February 2015. The first gold pour was in March 2015. Mining operations were suspended in June 2015 due to poor leach pad permeability and slower metal recovery than anticipated. Midway initiated bankruptcy in June 2015. Leaching and gold recovery continued through bankruptcy proceedings and the sale of the Property to GRP.
- GRP Pan, LLC acquired the Pan assets on May 17, 2016, from subsidiaries of Midway.
- Calibre Mining Corp. acquired GRP in 2021.

Drilling history to date is summarized in Table 6-1. More than 1,200 exploration or resource definition drill holes have been completed at Pan; many of the earliest drill holes cannot be verified and are not included in the database. Most drill holes completed early in the Project history by Alta Gold and Echo Bay are not included in the current database, due to lack of verifiable collar locations, geology and/or assay results. Water wells drilled by Midway in 2012 were logged for geology but not assayed and are excluded from the Table 6-1.

The current Mineral Resource drill hole database includes 1,179 drill holes totaling 377,744 ft, plus 2,324 ft in six water wells logged for geology but not sampled for assay. Of the assayed drill holes in the database, 1,146 holes with 364,839 ft were drilled by RC or rotary methods, and the rest were diamond core holes, totaling 12,905 ft in 33 drill holes.

MDA (2005), and Gustavson (2011, 2015) have reported on validation of the existence of drill hole collar location information, drilling logs and assay records for the drill holes in earlier modeling databases. Data verification and validation for the 2016 drill holes is reported in subsequent sections of this document.

Table 6-1: Project Drilling History

| Company                    | Years        | Holes Drilled<br>(RC/ Core) | Footage Drilled (RC/Core) | Drill Type           |
|----------------------------|--------------|-----------------------------|---------------------------|----------------------|
| Amselco                    | 1978 to 1985 | 84                          | 21,771                    | RC                   |
| Homestake                  | 1980         | 3                           | 620                       | RC                   |
| Hecla                      | 1986         | 7                           | 1,415                     | RC                   |
| Echo Bay                   | 1987 to 1988 | 108/5 <sup>(1)</sup>        | 19,905/825 <sup>(1)</sup> | RC/Core (Met)        |
| Alta Bay Venture           | 1988 to 1991 | 213                         | 66,960                    | RC                   |
| Alta Gold                  | 1991 to 1992 | 10/7 <sup>(1)</sup>         | 2,645/958 <sup>(1)</sup>  | RC (Twin)/Core (Met) |
| Latitude/Degerstrom JV     | 1999 to 2001 | 54                          | 16,143                    | RC                   |
| Castleworth Ventures       | 2003 to 2006 | 290/6                       | 68,005/1,289              | RC/Core              |
| Midway Gold <sup>(2)</sup> | 2007 to 2015 | 260/27                      | 124,355/11,616            | RC/Core              |
| GRP Minerals               | 2016         | 127                         | 45,665                    | RC                   |
| Totals in Database         |              | 1,146/33                    | 364,839/12,905            | RC/Core              |

Source: GRP and SRK, 2017

#### 6.3 Historical Mineral Resource and Reserve Estimates

Many of the historical Resource and Reserves estimates for Pan were completed prior to implementation of NI 43-101 standards. A Qualified Person has not done sufficient work to classify these historical estimates as current resources, and the issuer is not treating these as currently meeting CIM and NI 43-101 standards. The estimates are superseded by new drilling and mining depletion, therefore they are considered historical in nature.

### 6.3.1 Echo Bay

A qualified person has not done sufficient work to classify the Echo Bay historical estimate as a current resource estimate or Mineral Reserve and the issuer is not treating the historical estimate as a current resource estimate.

Echo Bay completed a cross-sectional polygonal ore reserve estimation in 1988, presented in Table 6-2. These reserve estimates have not been verified, are not considered reliable, are not relevant to the updated mineral resource presented in this report and are mentioned here for historical completeness only.

The estimate was prepared based on grade cut-offs of 0.015 oz/ton Au and 0.020 oz/ton Au over minimum drill lengths of 10 ft. The area of influence allowed per hole was  $\frac{1}{2}$  the distance to the adjacent cross-section, up to 100 ft, in the north-south direction, and  $\frac{1}{2}$  the distance to the nearest hole, up to 50 ft, in the east-west direction. Tonnage factors used were 15 ft $^3$ /ton at North Pan, and 13 ft $^3$ /ton at South Pan.

<sup>(1)</sup> No Alta Gold drill holes, or core drill holes by Echo Bay, are incorporated into the database for lack of verifiable collar locations, geology and/or assay results.

<sup>(2)</sup> Midway drilled 8 groundwater supply or monitoring wells in 2012. These were logged for geology, but not assayed; and are not included in this table. Six of these are included in the geological database, but none have assay data.

Table 6-2: Echo Bay Historical Polygonal Ore Reserve Estimation, 1988

|           | 0.0       | 15 oz/ton Au C         | 0.020 oz/ton Au Cut-off |           |                        |                        |
|-----------|-----------|------------------------|-------------------------|-----------|------------------------|------------------------|
| Area      | Tons      | Gold Grade<br>(oz/ton) | Contained Au<br>Ounces  | Tons      | Gold Grade<br>(oz/ton) | Contained Au<br>Ounces |
| North Pan | 2,877,822 | 0.027                  | 76,258                  | 1,869,200 | 0.032                  | 59,146                 |
| South Pan | 2,476,340 | 0.031                  | 76,689                  | 1,958,365 | 0.035                  | 68,244                 |
| Total     | 5,354,162 | 0.029                  | 152,947                 | 3,827,565 | 0.033                  | 127,390                |

Source: Jeanne, 1988, reported in MDA, 2005

#### 6.3.2 Alta BAY Joint Venture

Documentation of the following Alta Bay resource and reserve estimates is limited to annual reports submitted to LFC Trust that pre-date NI 43-101, and none appear to be modern CIM reporting standards. They should be treated as historical in nature.

Alta Bay calculated a polygonal geologic ore reserve in 1988 from 100 ft spaced cross-sections, presented in Table 6-3. The estimation was completed at 0.020 oz/ton Au cut-off and an area of influence of 100 by 50 ft per drill hole. Tonnage factors used were 15 ft³/ton at North Pan, and 13 ft³/ton at South Pan.

Table 6-3: Alta Bay Historical Polygonal Geologic Ore Reserves, 1990

| Area      | Tons       | Gold Grade (oz/ton Au) | Contained Ounces |
|-----------|------------|------------------------|------------------|
| North Pan | 6,744,406  | 0.021                  | 140,942          |
| South Pan | 4,191,765  | 0.025                  | 106,130          |
| Total     | 10,936,171 | 0.023                  | 247,072          |

Source: Myers, 1990, reported in MDA, 2005

In 1989 Alta Bay reported the results of [electronic] computer generated ore reserves for the Pan Project, summarized in Table 6-4. The annual report to LFC Trust indicates a strip ratio of 1.87 for North Pan and 1.63 for South Pan, but no other details are provided in the report. No original work could be located to further document this estimate.

Table 6-4: Alta Bay Historical Computer Generated Ore Reserves, 1990

| Area      | Tons       | Gold Grade (oz/ton Au) | Contained Ounces |
|-----------|------------|------------------------|------------------|
| North Pan | 5,125,240  | 0.022                  | 112,509          |
| South Pan | 5,874,519  | 0.020                  | 117,972          |
| Total     | 10,999,759 | 0.021                  | 230,481          |

Source: Myers, 1990, reported in MDA, 2005

In 1991, Alta Bay updated the polygonal "geologic ore reserves" for the project as shown in Table 6-5. This estimate was prepared using tonnage factors of 13 ft³/ton for all material, except argillaceous material at South Pan, which has a tonnage factor of 14 ft³/ton. All other parameters are the same as used in the previous estimation.

Table 6-5: Alta Bay Historical Polygonal Geologic Ore Reserves, 1991

| Area      | Tons       | Gold Grade (oz/ton Au) | Contained Ounces |
|-----------|------------|------------------------|------------------|
| North Pan | 6,744,406  | 0.0209                 | 140,942          |
| South Pan | 4,687,126  | 0.0238                 | 111,641          |
| Total     | 11,431,532 | 0.0231                 | 252,583          |

Source: Myers, 1991, reported in MDA, 2005

Also in 1991, Alta Bay reported "recoverable geologic ore reserves" for the Pan deposit as shown in Table 6-6. This model was completed using a tonnage factor of 13 ft<sup>3</sup>/ton for North Pan and South Pan, a gold recovery rate of 65%, and a gold price of US\$400/oz (Myers, 1991). No geology was used to constrain the model, and no other details were reported in the annual report to LFC Trust.

Table 6-6: Alta Bay Historical Computer Model Generated Recoverable Ore Reserves, 1991

| Area      | Contained Ounces(1) | Recoverable Ounces |
|-----------|---------------------|--------------------|
| North Pan | 153,762             | 99,945             |
| South Pan | 115,343             | 74,973             |
| Total     | 259,105             | 174,918            |

Source: Myers, 1991, reported in MDA, 2005

### **6.3.3 Latitude Minerals Corporation**

Prior to performing any surface work at the Pan Project, Latitude contracted Lynn Canal Geological Services of Juneau, Alaska to compile a digital drilling database, construct a three-dimensional geologic model, and estimate mineral resources on the property. The resource was modeled by performing variography on composited drill data to establish reasonable estimation parameters and estimated gold grades. Faults and lithologic contacts were used as hard boundaries. Tonnage factors applied were 13 ft³/ton at North Pan and 14 ft³/ton at South Pan. The resource estimate is summarized in Table 6-7, and according to MDA (2005) it appears to conform to definitions and criteria set out by the CIM. This resource estimate was not reviewed for the current report and is presented for project history only. Increase of the resource from the previous estimate appears to be the result of a lower resource CoG, as the same data was used for both.

<sup>(1)</sup> Contained Ounce values are calculated from Recoverable Ounces and recovery rate.

Table 6-7: Latitude Historic Resource Estimate, 1999

|                           | Indicated Resources |                           |                |                |                           |                |                |                           |                |  |
|---------------------------|---------------------|---------------------------|----------------|----------------|---------------------------|----------------|----------------|---------------------------|----------------|--|
|                           |                     | North Pan                 |                |                | South Pan                 |                |                | Total Indicated           |                |  |
| Cut-off<br>(oz/ton<br>Au) | Tons<br>(Mton)      | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces | Tons<br>(Mton) | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces | Tons<br>(Mton) | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces |  |
| 0.010                     | 10.41               | 0.017                     | 172,800        | 8.46           | 0.017                     | 144,300        | 18.86          | 0.017                     | 317,100        |  |
| 0.015                     | 4.88                | 0.022                     | 107,900        | 4.26           | 0.022                     | 94,900         | 9.14           | 0.022                     | 202,800        |  |
| 0.020                     | 2.37                | 0.028                     | 66,100         | 2.25           | 0.027                     | 61,300         | 4.62           | 0.028                     | 127,400        |  |
|                           |                     |                           |                | Inferr         | ed Resources              |                |                |                           |                |  |
|                           |                     | North Pan                 |                |                | South Pan                 |                |                | Total Indicated           | t              |  |
| Cut-off<br>(oz/ton<br>Au) | Tons<br>(Mton)      | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces | Tons<br>(Mton) | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces | Tons<br>(Mton) | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces |  |
| 0.010                     | 3.46                | 0.013                     | 44,500         | 3.89           | 0.013                     | 50,600         | 7.34           | 0.013                     | 95,100         |  |
| 0.015                     | 0.78                | 0.017                     | 13,900         | 0.94           | 0.018                     | 17,300         | 1.72           | 0.018                     | 31,200         |  |
| 0.020                     | 0.14                | 0.024                     | 3,400          | 0.31           | 0.022                     | 6,900          | 0.45           | 0.023                     | 10,300         |  |

Source: White and Buxton, 1999, reported in MDA, 2005

#### 6.3.4 Castleworth Ventures

After exploration drilling in 2003 and 2004, Castleworth Ventures commissioned MDA to complete a NI 43-101 resource estimate on the Pan Project. Parameters for the estimate are thoroughly discussed in the 2005 MDA report, and the results are summarized in Table 6-8. Using a 0.010 oz/ton Au cut-off, the measured and indicated total resource is 18.97 Mt at 0.019 oz/ton Au, with 361,400 gold oz contained. The inferred total was 8.30 Mt at 0.017 oz/ton Au, with 140,600 gold oz contained. This resource evaluation used an economic cut-off of 0.010 oz/ton Au. Reported resources are total in situ resources unconstrained by an economic pit shell. A significant amount of drilling has been completed since this resource estimate was completed, therefore the resource is considered historical in nature.

Table 6-8: Castleworth Ventures Historical Resource Estimate, 2005

|                           | Measured Resources |                           |                |                |                              |                |                |                           |                |  |
|---------------------------|--------------------|---------------------------|----------------|----------------|------------------------------|----------------|----------------|---------------------------|----------------|--|
|                           |                    | North Pan                 |                |                | South Pan                    |                |                | Total Measured            |                |  |
| Cut-off<br>(oz/ton<br>Au) | Tons<br>(Mton)     | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces | Tons<br>(Mton) | Gold Grade<br>(oz/ton Au)    | Gold<br>Ounces | Tons<br>(Mton) | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces |  |
| 0.010                     | 3.09               | 0.019                     | 59,600         | -              | -                            | -              | 3.09           | 0.019                     | 59,600         |  |
| 0.015                     | 1.66               | 0.026                     | 42,700         | -              | -                            | -              | 1.66           | 0.026                     | 42,700         |  |
| 0.020                     | 1.03               | 0.031                     | 32,200         | -              | -                            | -              | 1.03           | 0.031                     | 32,200         |  |
| 0.030                     | 0.40               | 0.043                     | 17,300         | -              | -                            | -              | 0.40           | 0.043                     | 17,300         |  |
| 0.040                     | 0.19               | 0.054                     | 10,300         | -              | -                            | -              | 0.19           | 0.054                     | 10,300         |  |
| 0.050                     | 0.10               | 0.064                     | 6,100          | -              | -                            | -              | 0.10           | 0.064                     | 6,100          |  |
|                           |                    |                           |                | Indicate       | ed Resources                 |                |                |                           |                |  |
|                           |                    | North Pan                 |                |                | South Pan                    |                |                | Total Indicate            | d              |  |
| Cut-off<br>(oz/ton<br>Au) | Tons<br>(Mton)     | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces | Tons<br>(Mton) | Gold<br>Grade<br>(oz/ton Au) | Gold<br>Ounces | Tons<br>(Mton) | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces |  |
| 0.010                     | 9.13               | 0.018                     | 162,600        | 6.75           | 0.021                        | 139,200        | 15.88          | 0.019                     | 301,800        |  |
| 0.015                     | 4.88               | 0.023                     | 111,300        | 4.53           | 0.025                        | 112,500        | 9.31           | 0.024                     | 223,800        |  |
| 0.020                     | 2.50               | 0.029                     | 73,500         | 2.84           | 0.030                        | 84,100         | 5.34           | 0.029                     | 157,600        |  |
| 0.030                     | 0.77               | 0.042                     | 32,600         | 1.04           | 0.040                        | 41,800         | 1.81           | 0.041                     | 74,300         |  |
| 0.040                     | 0.36               | 0.052                     | 18,700         | 0.42           | 0.050                        | 20,700         | 0.77           | 0.051                     | 39,400         |  |
| 0.050                     | 0.20               | 0.058                     | 11,600         | 0.15           | 0.061                        | 9,300          | 0.35           | 0.060                     | 21,00          |  |
|                           |                    |                           |                | Inferre        | d Resources                  |                |                |                           |                |  |
|                           |                    | North Pan                 |                |                | South Pan                    |                | Total Inferred |                           |                |  |
| Cut-off<br>(oz/ton<br>Au) | Tons<br>(Mton)     | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces | Tons<br>(Mton) | Gold<br>Grade<br>(oz/ton Au) | Gold<br>Ounces | Tons<br>(Mton) | Gold Grade<br>(oz/ton Au) | Gold<br>Ounces |  |
| 0.010                     | 2.82               | 0.017                     | 49,200         | 5.49           | 0.017                        | 91,400         | 8.30           | 0.017                     | 140,600        |  |
| 0.015                     | 1.46               | 0.023                     | 32,900         | 3.17           | 0.020                        | 62,900         | 4.62           | 0.021                     | 95,900         |  |
| 0.020                     | 0.79               | 0.028                     | 22,000         | 1.12           | 0.026                        | 28,800         | 19.1           | 0.027                     | 50,800         |  |
| 0.030                     | 0.26               | 0.036                     | 9,600          | 0.28           | 0.036                        | 9,200          | 0.52           | 0.036                     | 18,700         |  |
| 0.040                     | 0.08               | 0.045                     | 3,600          | 0.04           | 0.045                        | 2,000          | 0.12           | 0.045                     | 5,500          |  |
| 0.050                     | 0.01               | 0.051                     | 700            | 0.01           | 0.053                        | 400            | 0.2            | 0.052                     | 1,200          |  |

Source: MDA, 2005

### 6.3.5 Midway 2011

Between 2006 and 2011, Midway completed 209 drill holes, primarily RC holes for exploration and resource delineation, and several core holes for metallurgical studies. Estimated Resources and Reserves from the 2011 Feasibility Study are reported in Table 6-9 and Table 6-10 respectively. A significant amount of drilling has been completed since this resource and reserve estimate was completed, therefore the estimates are considered historical in nature.

Table 6-9: Midway Historical Resource Estimate, 2011

| Pan Total Measured Resource |                             |                        |           |  |  |  |  |  |
|-----------------------------|-----------------------------|------------------------|-----------|--|--|--|--|--|
| CoG (oz/ton)                | Tons                        | Grade Au (oz/ton)      | Ounces    |  |  |  |  |  |
| 0.008                       | 30,150,640                  | 0.0173                 | 520,186   |  |  |  |  |  |
| 0.006                       | 34,013,935                  | 0.0161                 | 546,756   |  |  |  |  |  |
| 0.004                       | 40,697,193                  | 0.0142                 | 579,238   |  |  |  |  |  |
|                             | Pan Total Indi              | cated Resource         |           |  |  |  |  |  |
| 0.008                       | 29,901,186                  | 0.0152                 | 453,351   |  |  |  |  |  |
| 0.006                       | 35,992,335                  | 0.0138                 | 495,357   |  |  |  |  |  |
| 0.004                       | 47,529,031                  | 0.0116                 | 550,571   |  |  |  |  |  |
|                             | Pan Total Measured P        | lus Indicated Resource |           |  |  |  |  |  |
| 0.008                       | 60,051,826                  | 0.0162                 | 973,537   |  |  |  |  |  |
| 0.006                       | 70,006,270                  | 0.0149                 | 1,042,112 |  |  |  |  |  |
| 0.004                       | 88,226,224                  | 0.0128                 | 1,129,809 |  |  |  |  |  |
|                             | Pan Total Inferred Resource |                        |           |  |  |  |  |  |
| 0.008                       | 1,952,486                   | 0.0170                 | 33,120    |  |  |  |  |  |
| 0.006                       | 2,457,481                   | 0.0149                 | 36,581    |  |  |  |  |  |
| 0.004                       | 4,330,080                   | 0.0105                 | 45,261    |  |  |  |  |  |

Source: Gustavson, 2011

Table 6-10: Midway Historical Reserves Statement, 2011

| Total Reserves                 | Tama (000%)  | Gold   |                |  |
|--------------------------------|--------------|--------|----------------|--|
| Total Reserves                 | Tons (000's) | oz/ton | Ounces (000's) |  |
| Proven Reserves                | 27,827       | 0.018  | 487.51         |  |
| Probable Reserves              | 25,427       | 0.015  | 376.71         |  |
| Proven & Probable Reserves     | 53,254       | 0.016  | 864.22         |  |
| Inferred within Designed Pit   | 695          | 0.013  | 9.00           |  |
| Waste within Designed Pit      | 94,582       |        |                |  |
| Total tons within Designed Pit | 148,531      |        |                |  |

Source: Gustavson, 2011

#### 6.3.6 Midway 2015

Midway issued an updated feasibility study (Gustavson, 2015) following a new resource and reserves estimation that incorporated early mine production data. The 2015 updated Mineral Resource and Mineral Reserve statements are presented in Table 6-11 and Table 6-12, respectively. A significant amount of drilling has been completed since this resource and reserve estimate was completed, therefore the estimates are considered historical in nature.

Table 6-11: Midway Historical Resource Estimate, 2015

|                     | Measured          |                   |                      | Indicated        |                   |                      |
|---------------------|-------------------|-------------------|----------------------|------------------|-------------------|----------------------|
| Cut-off<br>(oz/ton) | Tons<br>(000's)   | Grade<br>(oz/ton) | Contained (000's oz) | Tons<br>(000's)  | Grade<br>(oz/ton) | Contained (000's oz) |
| 0.008               | 15,676            | 0.017             | 264.7                | 12,208           | 0.014             | 167.4                |
| 0.006               | 18,339            | 0.015             | 283.3                | 15,818           | 0.012             | 192.8                |
| 0.004               | 20,430            | 0.014             | 293.4                | 19,185           | 0.011             | 210.1                |
|                     |                   | M&I               |                      | Inferred         |                   |                      |
| Cut-off             | Tons              | Grade             | Contained            | Tons             | Grade             | Contained            |
| (oz/ton)            | (000's)           | (oz/ton)          | (000's oz)           | (000's)          | (oz/ton)          | (000's oz)           |
| 0.008               | (000's)<br>27,886 | (oz/ton)<br>0.016 | (000's oz)<br>433.3  | (000's)<br>6,014 | (oz/ton)<br>0.015 | (000's oz)<br>88.4   |
| ,                   | ,                 | ,                 | ,                    | , ,              | ,                 | ,                    |

Source: Gustavson, 2015

Note: Open pit optimization was used to determine potentially mineable tonnage. Measured, Indicated and Inferred mineral classification was determined according to CIM Standards. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. The 2015 Measured, Indicated and Inferred resource is constrained within a US\$1,500 LG Pit shell. The base case estimate applies a CoG of 0.004 oz/ton based on the current operating costs, the 2011 Feasibility Study recoveries, and a US\$1,200 gold price.

Table 6-12: Midway Historical Reserves Statement, 2015

| Total Reserves                  | Tons (000's)  | Gold   |                |  |
|---------------------------------|---------------|--------|----------------|--|
| All Pits                        | 10115 (000 5) | oz/ton | ounces (000's) |  |
| Proven Reserves                 | 14,004        | 0.0155 | 217.4          |  |
| Probable Reserves               | 7,192         | 0.0118 | 85.1           |  |
| Proven & Probable Reserves      | 21,196        | 0.0143 | 302.4          |  |
| Waste within Designed Pits      | 19,289        |        |                |  |
| Total Tons within Designed Pits | 40,486        |        |                |  |

Source: Gustavson, 2015

#### 6.4 Historical Production

Application of process solution to the leach pad began at Pan in March of 2015 and by June 2015, Midway initiated bankruptcy proceedings. Production continued from the stacked ore while reorganization was underway. Production did not stop after the sale to GRP Minerals, but by that time the rate of gold production from the stacked ore had diminished greatly. The production record is summarized in Table 6-13.

Table 6-13: Historical Gold Production at Pan

| Mine Operator        | Years of Production           | Gold Ounces |
|----------------------|-------------------------------|-------------|
| Midway Gold Corp.    | March 2015 - May 2016         | 27,586      |
| GRP Pan, LLC         | June 2016 - September 2016    | 2,162       |
| GRP Pan, LLC         | October 2016 - September 2017 | 10,070      |
| GRP Pan, LLC         | October 2017 - September 2018 | 34,290      |
| GRP Pan, LLC         | October 2018 - September 2019 | 41,518      |
| GRP Pan, LLC         | October 2019 - September 2020 | 46,039      |
| GRP Pan, LLC         | October 2020 - September 2021 | 45,398      |
| GRP Pan, LLC         | October 2021 - January 2022   | 10,809      |
| Calibre Mining Corp. | January 2022 - December 2022  | 41,509      |
| Total                |                               | 259,381     |

Source: Calibre 2023

# 7 Geological Setting and Mineralization

# 7.1 Regional Geology

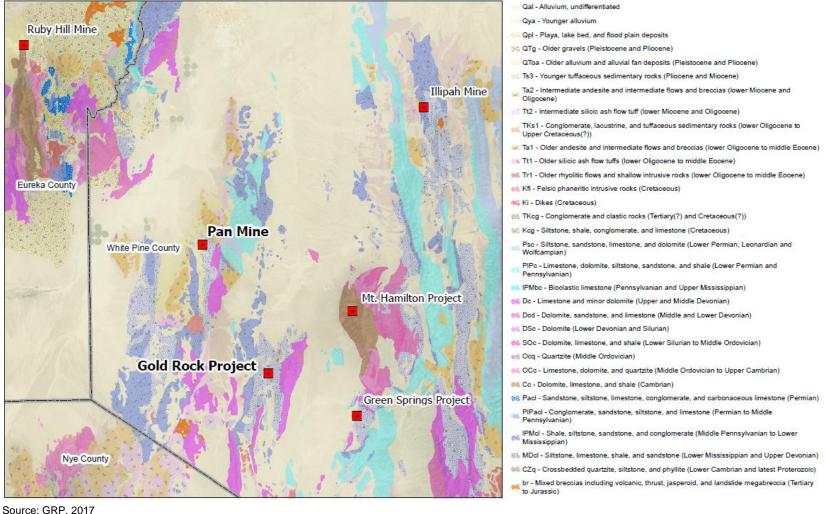
The Pan Project is located in the Pancake Range of central Nevada, in the eastern sector of the Great Basin Physiographic Province. When bedrock sediments were deposited during the middle to late Paleozoic Era, what is now central Nevada was at the margin of the North American plate. Variations in sea level caused facies changes in the sediments, from deep water shale to shallow water sandstone, and calcareous sediments at intermediate depths.

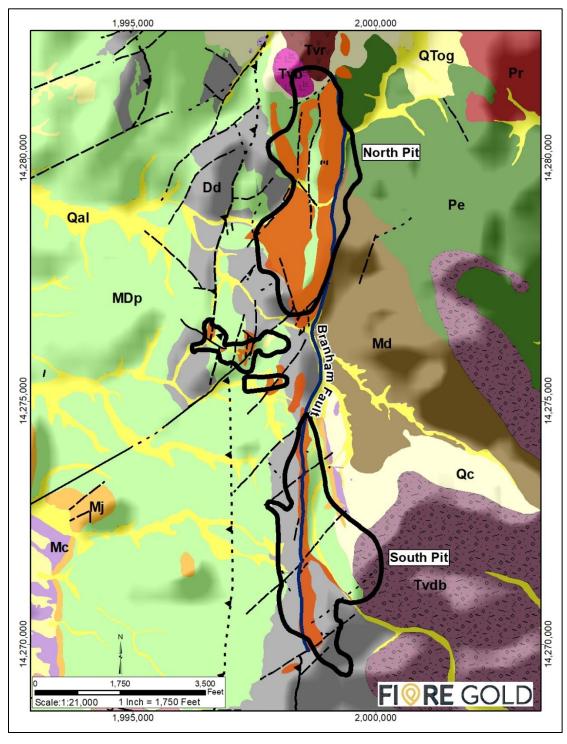
During the Cretaceous and early Tertiary, between 140 to 60 mega-annum (Ma), the Great Basin region was subjected to compression during the Sevier and Laramide orogenies. This compression resulted in the formation of generally north-striking folds and thrust faults. Localized magmatism was common during this period, and metal deposits related to igneous activity of this period are widespread throughout western North America. Examples near Pan include the Mt. Hope porphyry-skarn system and the Mt. Hamilton silver-gold deposit.

The current Great Basin landscape is shaped by crustal extension, which began in the middle Tertiary resulting in north-south trending mountain ranges and wide intervening valleys with thick sedimentary deposits. Mountain ranges are comprised of folded and tilted, Jurassic to Cambrian-aged marine sedimentary rocks that have been uplifted on steeply dipping normal faults. Precambrian metamorphic rocks are present in some ranges, such as the Ruby Mountains north of the Project, but Paleozoic marine sedimentary rocks comprise the typical bedrock in the region.

Tertiary extension has also caused localized volcanism, resulting in mafic to felsic flows, tuffs, and ash units capping sedimentary rocks. Volcanic units occur north and southeast of the Pan deposit areas.

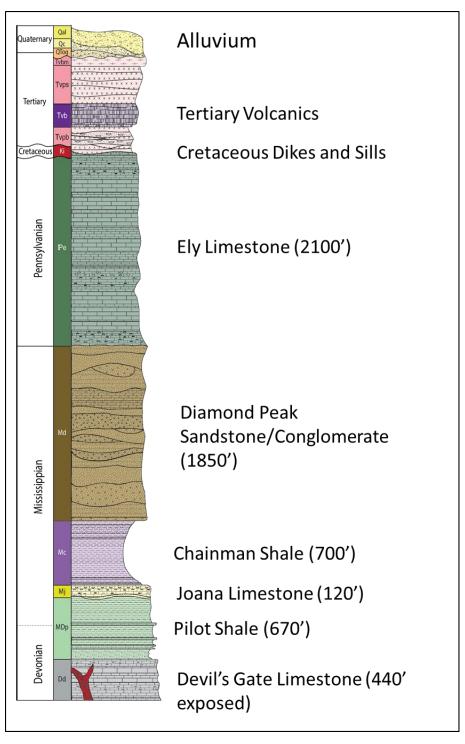
A map of the regional geology is provided in Figure 7-1.





Figure 7-1: Regional Geology Map

# 7.2 Local and Property Geology

Geology in the Project area is dominated by Middle to Late Paleozoic stratigraphy overlain by minor Tertiary-aged volcanic units. Quaternary-aged detrital deposits are limited to drainage channels. Consequently, there is good bedrock exposure in most of the Project area.


# 7.3 Lithology and Stratigraphy

Lithologic units in the area immediately surrounding Pan are dominantly Devonian- to Pennsylvanian-aged marine sediments, with lesser Cretaceous igneous intrusions, Tertiary volcanic tuffs and debris flows, and minor Tertiary to Quaternary alluvial deposits. In 2013, Midway geologists mapped the surface geology and measured stratigraphic thicknesses of the sedimentary units at Pan. The results are presented below, including a geologic map in Figure 7-2 and a stratigraphic column in Figure 7-3. Lithologic units are presented in order of oldest to youngest.



Source: GRP, 2020

Figure 7-2: Geologic Map of the Pan Mine Area with Conceptual Pit Crests



Source: Midway, 2013

Figure 7-3: Pan Project Stratigraphic Column

#### Simonson Dolomite (Ds) - Devonian

The Simonson Dolomite is the oldest lithologic unit intersected by drilling, but does not outcrop in the Project area. Thickness ranges from 500 to 1,300 ft thick in White Pine County (Smith, 1976), but only the top portion of the dolomite has been drilled at South Pan. The dolomite is a light gray, massively bedded unit.

#### Devils Gate Limestone (Dd) - Late Devonian

The Devils Gate Limestone, subdivided into a lower Meister Member and an upper Hayes Canyon Member, is the oldest lithologic unit that outcrops in the northern Pancake Range. Measured thicknesses of the formation range from approximately 1,000 ft to 2,500 ft, but at Pan only the topmost 400 to 500 ft is exposed at the surface.

The Meister Member at Pan is composed of alternating beds of medium-bedded, locally laminated and silty, very dense, medium gray dolomite and dolomitic limestone, interbedded with lesser light brownish-gray limestone. Micro and macrofossils are common throughout, particularly Stromatopora and Cladopora. The unit becomes pinkish and bleached where the amount of silt increases. This unit appears to be closer to the surface in the vicinity of North Pan as it was commonly intersected in the Banshee area.

The Hayes Canyon Member is composed entirely of thick-bedded, bleached to pink-red to light to medium brown-gray limestone that is locally silty or argillaceous. Where enough silt is present, the color becomes bleached, pink to red. Fossils are fairly common, in particular Stromatopora, Cladopora, ostracods, and brachiopods, with occasional gastropods. This unit becomes siltier and sandier upsection, immediately below the Devonian Pilot Formation.

The upper Devils Gate Limestone near the contact with Pilot Shale, is a host for gold mineralization at the Pan Mine.

#### Pilot Shale (MDp) - Late Devonian to Early Mississippian

Pilot Shale at Pan is 600 to 700 ft thick and has different characteristics in the upper and lower portions of the unit. The Lower Pilot is a calcareous and carbonaceous flaggy siltstone with silty limestone interbeds near the base. It is dark gray on a fresh surface and weathers to buff or tan. Silicified and argillized Lower Pilot Shale is a host of gold mineralization at the Pan property.

The Upper Pilot is dominantly a thinly bedded siltstone with zones of thinly bedded papery siltstone.

#### Joana Limestone (Mj) - Mississippian

Joana Limestone is 120 ft thick at Pan, and ranges in thickness from 90 to 500 ft in White Pine County (Smith, 1976). It is a gray, medium grained, unevenly bedded limestone with abundant fossil fragments, chert nodules, and detrital limestone interbeds. Reported fossil types include echinoderm, bryozoans, foraminifera, algae, and crinoids. Locally, quartz arenite sandstone is present at the base of the unit.

#### Chainman Shale (Mc) - Mississippian

The Chainman Shale ranges in thickness from 1,000 to 2,000 ft, and is 700 ft thick at Pan, possibly indicating structural thinning from regional faulting. It consists of dark gray to black shale with thin interbeds of olive gray silty shale and siltstone. The upper most portions contain relatively thin beds of rusty colored sandstones which grade upward into the Diamond Peak Formation.

#### **Diamond Peak Formation (Md) - Mississippian**

The Diamond Peak Formation consists of irregular beds of chert pebble orthoconglomerate, paraconglomerate and litharenite sandstone. Thickness of the formation ranges from less than 1,000 to 3,700 ft and was measured at about 1,700 ft thick near Pan.

#### Ely Limestone (Pe) - Pennsylvanian

The Ely Limestone was measured at 2,070 ft in the Pan area. The lower 700 ft consists of thin to medium bedded micrite to fine sparite with abundant brachiopod beds and tan to grey chert stringers and nodules. The upper 1,370 ft is medium to thin bedded limestone and silty limestone with minor chert nodule horizons. The siliciclastic content increases near the top of the unit.

#### Igneous Intrusives (Ki) - Cretaceous

Intrusive rocks are not common in the Pan area. Within the deposit area, rocks interpreted as thin dikes have been intercepted in a few drill holes and consist of pinkish monzonite porphyry containing irregular feldspar, hornblende, and biotite phenocrysts in a fine quartz-orthoclase matrix. Texture and composition is similar to that of other intrusive rocks in the White Pine Mountains, and these dikes are thought to be temporally related.

#### Volcanic Units, General (Tv) - Tertiary

Tertiary volcanic flows and tuffs cover the sedimentary units at the north end of North Pan, and a fairly young volcanic debris flow mantles the sediments southeast of the South Pan pit. At the north end of the North Pan mineralization, drilling has penetrated through these volcanic units and intercepted mineralized sediments. This would indicate that mineralization is older than the volcanic units.

#### Pinto Basin Tuff (Tvpb)

The Pinto Basin tuff is a light-colored pumice-rich, non-welded air fall tuff. Its thickness has been measured at 285 ft near Pan and has been dated at other locations at 34.6 Ma (Nolan et al., 1974).

#### Richmond Mountain Andesite (Tvb)

The Richmond Mountain andesite is a dark, aphanitic to glassy flow with flow banding, minor cooling jointing, and a basal layer of scoria. Near Pan the unit is 240 ft thick.

#### Pancake Summit Tuff (Tvps)

Tan or pink, crystal-rich, moderately welded ash flow tuff with coarse smoky quartz, sanidine, and biotite crystals. It is 400 ft thick near Pan.

#### Bates Mountain Tuff (Tvbm)

Densely welded, crystal-poor tuff with common spherulitic textures and vapor phase alteration. It is 50 ft thick near Pan.

#### Debris Flow (Tvdf)

Heterolithic, unconsolidated debris flow consisting of basaltic and siliciclastic cobbles and boulders in finer pumice-rich matrix. Thickness is variable and it is interpreted as a volcanic unit.

#### **Tertiary and Quaternary Sedimentary Deposits**

Silt to cobble clast size, unconsolidated material that post-dates the rock units listed above.

**QTog:** Older gravel commonly cemented by caliche, with incised drainages later filled with alluvium, and overlain by colluvium.

Qc: Colluvium as slope debris of variable composition and thickness, gravel to cobble clast size.

**Qal:** Alluvium as graded channel deposits, silt to gravel clast size, mostly limited to currently active intermittent stream channels.

#### 7.3.1 Alteration

Alteration associated with the Pan deposits is typical of Carlin-style gold systems, and includes silicification, argillization, decalcification, and oxidation. Breccia bodies may be silicified, as jasperoid, or argillized, and can contain variably altered fragments, including silicified, clay altered, and/or decalcified fragments. The Pilot Shale-Devils Gate Limestone contact is commonly silicified, but may be argillized and/or decalcified. This contact frequently shows evidenced of karsting and solution cavities.

Silicification is characterized by multi-phase brecciation and passive silica flooding along bedding and structures. Silicification occurs in breccia zones and in the Pilot Shale, and small zones have also been identified in the Devils Gate Limestone. Minor quartz veining has been reported in North Pan, particularly in association with the Campbell Jasperoid.

Clay alteration is generally associated with hydrothermal alteration and carbonate destruction. Clay along faults and bedding is common in both the Pilot Shale and Devils Gate Limestone and is a common matrix of solution/collapse breccias. Clay content in some South Pan ores can be upwards of 30% of the rock by weight and is dominantly composed of illite and lesser amounts of kaolinite.

Decalcification of both the Devils Gate Limestone and calcareous siltstones of the Pilot Shale is spatially associated with mineralization encountered at Pan. Decalcification results in a sanded, punky texture, especially in lithologic units with high original carbonate content.

Mineralization at Pan occurs in strongly oxidized rock to a nominal depth of 500 ft and locally as deep as 700 ft. Oxidation is prevalent throughout each of the zones with strong development of goethite and

hematite iron oxides. Liesegang banding in the Pilot Shale is associated with oxidation. Sulfide minerals have rarely been described in drill logs at Pan and are not associated with known gold mineralization.

Barite is a typical accessory mineral for gold mineralization and silicification. Most mineralized areas contain elevated barite levels, typically above 0.2% weight percent. Hydrothermal barite veins were briefly exploited in the 1970s at the Cue Ball Barite Mine, in the southeast area of the Property.

#### 7.3.2 Structure

The Branham Fault Zone (BFZ) is a north-south trending, steeply dipping structure that controls the geology at Pan. The fault zone is exposed in both the North and South Pits, and has a slight dip west from vertical. On the west side of the fault, Devonian through Mississippian stratigraphic units strike north-south and dip 10° to 30° westward. On the east side of the fault, Devonian through Permian units strike about 30° to 35° to the northwest and dip 65° to 70° to the northeast.

The stratigraphic units on the east side of the BFZ comprise the southwest limb of a northwest trending syncline which is truncated by the BFZ. The BFZ is recognizable in the field by the juxtaposition of younger sedimentary rocks to the east against older sedimentary rocks to the west, and can be tracked north to Tertiary volcanic units.

The displacement along the BFZ is not completely understood, but given the juxtaposition of broadly folded, northeast dipping units against gently westerly dipping units, it seems difficult to ascribe simple normal displacement to the fault. Calibre geologists believe the BFZ to have a complex and long-lived history of movement, likely related to shifting and adjusting plate margins, and likely different displacement vectors. A recent interpretation by Calibre geologists, aided by accumulated blast hole data and detailed structural observation of exposed high walls suggests that the latest and perhaps most significant movement of the BFZ is as a right-lateral strike-slip fault, with lateral displacement of approximately 8,700 ft. This interpretation suggests that the North and South Pan mineralized zones were likely a single deposit at the time of mineralization but have since been separated by N-S movement along the BFZ. This interpretation is supported by independent structural patterns and by mineralization patterns in blast hole drilling.

To the south of the deposit area, the BFZ may be offset by cross-cutting northeast trending faults and appears to proceed south with Devils Gate Limestone on both sides of the fault, and without the distinctive alteration and mineralization in the Pan deposit area.

The terrain west of the BFZ is cut by a number of northeast trending high angle faults with varying displacement senses. There are also a number of north trending faults, which may include high angle, dipslip faults, and low angle, easterly-directed thrust faults.

Considerable solution/collapse breccia is present along and in proximity to the BFZ and other associated structures to the west. The breccias host a substantial portion of the gold resource at the Pan Project and are interpreted as solution/collapse breccias and hydrothermal breccias. These formed by the small-scale transport of broken rock bodies in association with hot hydrothermal fluids during the mineralizing event(s). The resultant geometry is one of elongate pods of brecciation and alteration that form along north-south

or northeasterly trending faults, along with brecciation and alteration forming along bedding planes of preferential units, most notably along the contact of the Pilot Shale and Devils Gate Limestone. Breccias vary from clast to matrix supported, and contain angular to subrounded sedimentary fragments. Associated crackle breccia, wherein the rock is shattered but fragments remain roughly in place and are not rotated, occurs marginal to or as relicts within the larger breccia bodies, and is altered and mineralized in a manner similar to the more well-developed breccias.

# 7.4 Significant Mineralized Zones

Pan has three main mineralized zones; North, Central, and South. Gold mineralization spatially follows the Devils Gate Limestone – Pilot Shale contact in all three and is also controlled by steeply-dipping faults that trend north-south and secondarily by west-northwest (WNW) open fold axes. North Pan is dominated by: 1) near-vertical pipes and bodies of silicified solution breccia localized at the Pilot Shale—Devils Gate Limestone contact adjacent to the BFZ, and 2) stratiform-like modestly dipping breccia bodies and zones west of the BFZ focused near the locally folded Pilot Shale—Devils Gate contact. Central and South Pan have more argillic alteration than silicic. Mineralization in Central Pan is at the Pilot—Devils Gate contact and secondarily controlled by WNW trending open folds, and likely other subtle structures which have not been clearly identified. These open folds were not recognized from exploration drilling, and have only become apparent after exposure in the pit walls. Their significance in controlling mineralization is also subtle but has been confirmed by examination of blast hole assays. South Pan mineralization occurs in two zones: 1) a wide, clay-altered, near-vertical solution breccia zone along the west side of the BFZ, and 2) a stratigraphically-controlled zone east of the Branham Fault along the Pilot—Devils Gate contact. This zone dips northeast at about 55°.

The newly identified stratiform mineralization in the Banshee area, west of North Pan, is currently interpreted to represent the opposite limb 'mirror image' of the South Pan stratigraphically- controlled zone.

# 8 Deposit Type

# 8.1 Mineral Deposit

The Pan gold deposits are Carlin-style, which are epithermal in origin, comprised of disseminated gold hosted in sedimentary rock units. Gold particles occur as micron to submicron size disseminations. Visible or coarse gold is not common in this type of deposit, and has not been observed at Pan. Controls on mineralization in Carlin-style systems and at the Pan Project include both structure and stratigraphy

### 8.2 Geological Model

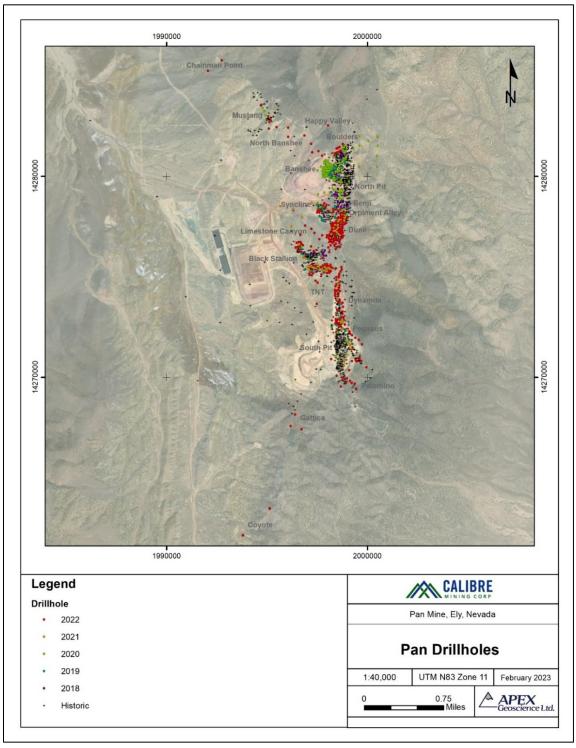
Gold mineralization is generally distributed along high-angle faults, and in a more tabular fashion subparallel to stratigraphy. Solution breccias developed in association with faults at the Pan Project serve as the primary host for gold mineralization, and have internal anisotropy that follows relic bedding orientation. Additional mineralization is hosted in favorable stratigraphy, such as the lower Pilot Shale and the upper siltier portions of the Devils Gate Limestone. More subtle mineralization controls occur as the axial traces of open folds, both anticlines and synclines trending obliquely (most commonly WNW) to the BFZ.

# 9 Exploration

Exploration activities that were conducted prior to 2018 can be found in the 2017 technical report (SRK 2017) including near mine targets, and a summary of the historical exploration activities are detailed in Section 6 of this report.

Calibre conducted five drill programs between 2018 and 2022 at the Pan Mine at various targets including the active mine pits and selected near mine exploration targets. A detailed description of the drill programs is included in Section 10. No other significant exploration activities were conducted at the Pan Mine.

# 10 Drilling


Historical drilling at the Pan deposit dates back to 1978 with the initial discovery of gold-bearing jasperoids. Drilling operations have been conducted over the Project area since this discovery. Historical drilling is discussed in Section 6.

More than 1,700 exploration or resource definition drillholes have been completed at Pan; many of the earliest drillholes cannot be verified and are not included in the database. Most drillholes completed early in the Project history by Alta Gold and Echo Bay are not included in the current database, due to lack of verifiable collar locations, geology and/or assay results.

The current Mineral Resource drillhole database includes 1,179 pre 2018 drillholes totaling 377,744 ft, plus 2,324 ft in 6 water wells logged for geology but not sampled for assay (Table 6-1). Of the assayed pre-2018 drillholes in the database, 1,146 holes with 364,839 ft were drilled by RC or rotary methods, and the rest were diamond core holes, totaling 12,905 ft in 33 drillholes.

MDA (2005), and Gustavson (2011, 2015) have reported on validation of the existence of drillhole collar location information, drilling logs and assay records for the drillholes in earlier modeling databases. Additional data verification of the pre-2018 drillhole data has been performed by SRK (SRK 2017; SRK 2019). APEX personnel and Mr. Dufresne have checked approximately 10% of the pre 2018 drill data and found no significant issues. Mr. Dufresne considers the Pan drillhole database, including the historical pre-2018 data and the 2018 to 2022 data, well validated and suitable for the preparation of the MRE and Minerals Reserves as presented herein.

The following section includes a brief summary discussion of the historical drilling pre-2018 and a more detailed discussion of the drilling programs conducted by Calibre between 2018 and 2022. Figure 10-1 outlines the locations of all drillholes completed by Calibre. All five programs used the same procedures for staking proposed drillhole locations, collection of samples, final collar surveying, and down hole drillhole deviation surveying.



Source: APEX, 2023

Figure 10-1: Calibre drillhole locations by year

# 10.1 Historical (Pre-2018) Drilling

The current Mineral Resource drillhole database includes 1,179 pre-2018 drillholes totaling 377,744 ft, plus 2,324 ft in six water wells (Table 6-1). Of the assayed pre-2018 drillholes in the database, the drilling can be divided into pre-2000 drilling involving a number of companies and largely completed by dry RC methods (with minor rotary drilling campaigns), and post-2000 drilling (2003 to 2016) with the vast majority of drilling completed by Castleworth Ventures, Midway and GRP utilizing wet RC methods. Castleworth Ventures and Midway did complete a number of core holes (33) during the period. About 40% of the historical drillholes in the database were completed pre-2000 and 60% of the holes between 2003 to 2016 (Table 6-1).

For the pre-2000 drilling data, holes lacking collar coordinates, geological logs, assay sheets/certificates were not utilized in the database. Approximately two thirds of the holes were drilled as vertical holes with one third drilled as angle holes. Down-hole surveys were either not completed or not documented/recorded for any of the historical pre-2000 drillholes. Collar coordinates were captured in grid coordinates and were entered into the database from copies of the original drill logs and checked against maps, which were then converted into NAD83, Zone 11 UTM coordinates in feet. Survey instrumentation and accuracy for the collar surveys for the pre-2000 drillholes in not known. Historical drillholes by Midway from 2007 onwards were surveyed by either professional licensed surveyors or the Pan mine site surveyors and were collected in NAD83, Zone 11 coordinates directly. Most drillholes from 2007 onwards (with a few exceptions) were down-hole surveyed utilizing a gyroscopic survey instrument by International Directional Services of Elko, Nevada.

Drill spacing for the historical drilling was completed at a nominal spacing of 100 ft centers at North and Central Pan and at 165 ft centers at South Pan. There is little to no documentation of sampling procedures for the historic pre-2000 drillholes. Most if not all the RC and rotary drilling was sampled utilizing 5 ft intervals. MDA (2005) describe the pre-2000 RC sampling as "standard dry RC sampling" whereby dry cuttings were collected in a cyclone, with the sample then passed through a riffle splitter and into a sample bag representing each 5 ft interval. This was standard practice at the time and likely utilized across many of the pre-2000 RC drilling campaigns. MDA (2005) indicates that groundwater was rarely encountered within 1,000 ft of surface. Ideal conditions for dry RC drilling.

The historical 2003 to 2016 drilling completed by Castleworth Ventures, Midway and GRP was conducted as wet RC drilling with water injection between 1 and 2 gallons per minute (Gustavson, 2011 and 2015). Samples were collected at 5 ft intervals with cuttings passed through a cyclone and into a rotary vane splitter yielding a constant sample size of about 7 kg. Plastic RC chip trays were prepared for each hole with the hole number and footage. The chip trays were then utilized for later geological logging of the RC drillholes. The RC samples were generally allowed to drain at site and then were either transported to Eureka or Ely each day by Castleworth, Midway or GRP personnel. Certified laboratory personnel picked up the samples from either location and transported them to the appropriate assay laboratory in either Elko, Winnemucca or Reno, Nevada.

A total of 27 diamond core holes were completed by Midway from 2010 to 2012. The core holes were completed using HQ sized core from ground surface. Core recovery was generally documented as good with recovery averaging about 92% (Gustavson, 2011 and 2015). However, core recovery did decrease

in high fractured, brecciated and altered zones often associated with gold mineralization. The core holes were generally split in half with half sent for assays and the remaining half utilized for metallurgical work or archived in Ely, Nevada.

### 10.2 2018 Drilling

Calibre carried out a drill program between January and July of 2018 that consisted of the completion of 71 RC drillholes totaling 28,730 ft. The goals of this program were to increase the current resource by adding development drillholes to the current mine pits, and to expand the known mineralization currently not being mined using exploration drillholes outside the current mining area. Of the 71 RC drillholes, 56 returned significant gold mineralization greater than 0.20 grams per metric tonne (g/t), which is equivalent to 0.006 troy ounce per short ton (oz/ton), with an interval length greater than 10 ft. Table 10-1 summarizes the significant assay intercepts from the entire drill program. Drilling in 2018 was carried out by Layne Christensen.

Proposed drillholes were staked in the field by the Pan Mine survey group using RKT survey equipment. Pads were constructed over the drillhole locations with the appropriate dimensions in order to safely conduct drilling operations. A Calibre geologist confirmed the hole locations and lined up the drill rigs before drilling operations commenced. The drillers were provided with uniquely numbered sample bags assigned to each drillhole. The RC drill rig sampled every 5-foot interval utilizing a cyclone splitter that homogenized the entire interval and split out a 5-10 kg sample into a uniquely numbered sample bag. The drillers were also provided sample sheets indicating which 5-foot interval corresponded to each uniquely numbered sample bag to ensure each interval was properly sampled and tracked. The drillers also collected washed RC chips of each interval for future geological logging and interpretation. Once each hole was completed, International Directional Services (IDS) conducted a downhole survey using a Surface Recording Gyroscope model DG-69, to measure drillhole deviation. The final collar location was surveyed by the Pan Mine survey group and a wooden stake with the drillhole ID was placed in the ground to mark the location.

Each sample bag was placed into a bin containing all the samples for that drillhole. Calibre geologists prepared and inserted random quality assurance/quality control (QA/QC) samples at known intervals. During the 2018 program Calibre utilized 6 QA/QC standards, blank material, and field duplicates. The standards were chosen at random and inserted in regular intervals in the drill sequence. All samples were sent to ALS in Reno, NV for analysis. Calibre geologists described each 5-foot sample interval for lithology, alteration, mineralization, oxidation, structures, and any important geological features. This information was used to help guide geological interpretations in the subsurface.

The development drilling focused on expanding the resource at Red Hill and North Pan/Campbell. Forty-six drillholes were completed during this phase of drilling and account for 70% of the total footage drilled during 2018. All drillholes except PND18-21, 34, and 53 contained gold greater than the cutoff of 0.20 g/t (0.006 oz/ton) Au with an interval length greater than 10 ft for the development phase of the drill program. These results assisted in significantly expanding the current resource at the Pan Mine.

The exploration portion of the 2018 drill program consisted of 25 RC drillholes completed over Breccia Hill, Black Stallion, and Dynamite for a total of 8,865 ft of drilling. Most of the drilling was focused on the Breccia

Hill and Black Stallion targets. The exploration portion of the drill program was successful in expanding the known gold mineralization. The intercepts obtained were smaller than those intersected by the development drilling, however the intercepts from the exploration holes were often closer to surface.

Table 10-1: Pan 2018 RC Drillhole Assay Highlights

| Hole ID  | Target Area    | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|----------------|--------------|------------|-------------------|-------------|----------------|
| PN18-09  | Breccia Hill   | 255          | 265        | 10                | 0.582       | 0.017          |
| PN18-11  | Breccia Hill   | 45           | 55         | 10                | 0.293       | 0.009          |
| PN18-11  | Breccia Hill   | 105          | 115        | 10                | 0.280       | 0.008          |
| PN18-12  | Breccia Hill   | 100          | 130        | 30                | 0.326       | 0.010          |
| PN18-12  | Breccia Hill   | 170          | 180        | 10                | 0.292       | 0.009          |
| PN18-47  | Breccia Hill   | 55           | 90         | 35                | 0.259       | 0.008          |
| PN18-49  | Breccia Hill   | 65           | 100        | 35                | 0.263       | 0.008          |
| PN18-52  | Breccia Hill   | 70           | 160        | 90                | 0.485       | 0.014          |
| PN18-58  | Black Stallion | 155          | 235        | 80                | 0.925       | 0.027          |
| PN18-58  | Black Stallion | 300          | 310        | 10                | 0.319       | 0.009          |
| PN18-59  | Black Stallion | 350          | 360        | 10                | 0.575       | 0.017          |
| PN18-59  | Black Stallion | 185          | 230        | 45                | 0.435       | 0.013          |
| PN18-62  | Black Stallion | 65           | 90         | 25                | 1.620       | 0.047          |
| PN18-62  | Black Stallion | 285          | 295        | 10                | 0.249       | 0.007          |
| PN18-65  | Black Stallion | 75           | 95         | 20                | 0.269       | 0.008          |
| PN18-66  | Black Stallion | 130          | 200        | 70                | 1.450       | 0.042          |
| PN18-66  | Black Stallion | 75           | 100        | 25                | 0.579       | 0.017          |
| PN18-66  | Black Stallion | 305          | 315        | 10                | 0.525       | 0.015          |
| PN18-69  | Black Stallion | 0            | 40         | 40                | 0.905       | 0.026          |
| PND18-02 | North Pan      | 0            | 35         | 35                | 0.907       | 0.026          |
| PND18-03 | North Pan      | 120          | 130        | 10                | 0.830       | 0.024          |
| PND18-05 | Campbell       | 105          | 120        | 15                | 1.017       | 0.030          |
| PND18-05 | Campbell       | 55           | 100        | 45                | 0.726       | 0.021          |
| PND18-06 | Campbell       | 65           | 320        | 255               | 0.569       | 0.017          |
| PND18-08 | North Pan      | 370          | 435        | 65                | 1.335       | 0.039          |
| PND18-08 | North Pan      | 0            | 15         | 15                | 1.235       | 0.036          |
| PND18-13 | Syncline       | 35           | 60         | 25                | 0.754       | 0.022          |
| PND18-13 | Syncline       | 95           | 105        | 10                | 0.610       | 0.018          |
| PND18-19 | North Pan      | 0            | 45         | 45                | 1.574       | 0.046          |
| PND18-20 | Campbell       | 165          | 230        | 65                | 0.565       | 0.016          |
| PND18-23 | Red Hill       | 270          | 330        | 60                | 0.707       | 0.021          |
| PND18-27 | Red Hill       | 140          | 155        | 15                | 2.412       | 0.070          |
| PND18-27 | Red Hill       | 170          | 190        | 20                | 0.644       | 0.019          |

| Hole ID  | Target Area | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|-------------|--------------|------------|-------------------|-------------|----------------|
| PND18-28 | Red Hill    | 160          | 280        | 120               | 0.873       | 0.025          |
| PND18-30 | Red Hill    | 325          | 450        | 125               | 0.675       | 0.020          |
| PND18-37 | Red Hill    | 165          | 315        | 150               | 0.764       | 0.022          |
| PND18-39 | Red Hill    | 205          | 355        | 150               | 0.804       | 0.023          |
| PND18-42 | Red Hill    | 145          | 200        | 55                | 0.693       | 0.020          |
| PND18-43 | Red Hill    | 165          | 230        | 65                | 0.620       | 0.018          |

Source: APEX, 2020

# 10.3 2019 Drilling

Calibre carried out an exploration program in the summer and fall of 2019 that consisted of 42 RC drillholes. The goal of the 2019 drill program was to expand the known resource and explore for new mineralization within the mine area. The scope of the program was limited to previously disturbed ground which was already permitted for disturbance. The 42 RC drillholes totaled 21,450 ft and the drilling was carried out by Boart Longyear.

All proposed drill sites were staked in the field by the Pan Mine survey group using RKT survey equipment and captured in UTM NAD 1983, Zone 11 in feet. Pads were constructed over the chosen drillhole locations with the appropriate dimensions in order to safety conduct drilling operations. A Calibre geologist confirmed each hole location and lined up the drill rigs before drilling operations commenced. The drillers were provided with uniquely numbered sample bags assigned to each drillhole. The RC drill rig sampled every 5-foot interval utilizing a cyclone splitter that homogenized the entire interval and split out a 5-10 kg sample into a uniquely numbered sample bag. The drillers were also provided sample sheets indicating which 55-foot interval corresponded to each uniquely numbered sample bag to ensure each interval was properly sampled and tracked. Additionally, the drillers collected washed RC chips of each interval for future geological logging and interpretation. Once each hole was completed, the drill crew conducted a downhole survey using a Reflex EZ-Gyro that measured the drillhole deviation. The final collar location was surveyed by the Pan Mine survey group and a wooden stake with the drillhole ID was placed in the ground to mark the location.

Each sample bag was placed in a bin that contained all the samples from that drillhole. Calibre geologists prepared and inserted QA/QC samples at known intervals. During the 2019 program Calibre utilized 3 QA/QC standards, blank material, and field duplicates. The standards alternated in a regular order between the 3 types. All drillhole samples were shipped in a sealed bin to ALS in Reno, NV for analysis. ALS was provided with a sample list and confirmed receipt of the specified number of samples and correct sample ID's. All chain of custody procedures were followed during shipment from Pan to the ALS facility.

<sup>\*</sup>All drillholes were angle to vertical holes, with azimuths and inclinations designed to intersect targeted structures as nearly as possible to perpendicular. Consequently, all intercepts reported here are believed to be approximately 'true width', however there may be some exceptions to this on a hole by hole basis particularly holes targeting near vertical structures.

Of the 42 drillholes completed during 2019, 30 intersected significant mineralization above a grade cutoff of 0.20 g/t (0.006 oz/ton) Au, with an interval length greater than 10 ft. Table 10-2 summarizes the key intersections from the 2019 drill program.

Mineralization was extended at all targets drilled during the 2019 exploration program. A new area of mineralization, called Banshee, was discovered southwest of Red Hill and west of North Pan. This area of mineralization follows the Pilot – Devils Gate contact as it rises towards the surface towards the west. The style of mineralization and alteration present is similar to mineralization seen throughout the mine. A total of 10 holes from the 2019 drill program tested the Banshee area and intersected significant mineralization in all but two holes. This indicated that the mineralization at Banshee was open in all direction.

Table 10-2: Pan 2019 RC Drillhole Assay Highlights

| Hole ID  | Target Area | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|-------------|--------------|------------|-------------------|-------------|----------------|
| PR19-002 | Banshee     | 210          | 240        | 30                | 0.409       | 0.012          |
| PR19-005 | Banshee     | 5            | 120        | 115               | 0.638       | 0.019          |
| PR19-005 | Banshee     | 140          | 180        | 40                | 0.493       | 0.014          |
| PR19-006 | Banshee     | 30           | 70         | 40                | 1.162       | 0.034          |
| includes | Banshee     | 40           | 65         | 25                | 1.445       | 0.042          |
| PR19-007 | Banshee     | 55           | 65         | 10                | 0.341       | 0.010          |
| PR19-007 | Banshee     | 145          | 195        | 50                | 0.768       | 0.022          |
| includes | Banshee     | 155          | 170        | 15                | 1.237       | 0.036          |
| PR19-009 | North Pan   | 105          | 230        | 125               | 0.793       | 0.023          |
| includes | North Pan   | 135          | 185        | 50                | 1.198       | 0.035          |
| PR19-012 | Syncline    | 150          | 165        | 15                | 0.511       | 0.015          |
| PR19-014 | Syncline    | 90           | 100        | 10                | 0.440       | 0.013          |
| PR19-014 | Syncline    | 150          | 160        | 10                | 0.569       | 0.017          |
| PR19-015 | Red Hill    | 105          | 135        | 30                | 0.353       | 0.010          |
| PR19-015 | Red Hill    | 150          | 160        | 10                | 0.448       | 0.013          |
| PR19-015 | Red Hill    | 175          | 205        | 30                | 0.350       | 0.010          |
| PR19-016 | Red Hill    | 170          | 185        | 15                | 2.447       | 0.071          |
| PR19-017 | Red Hill    | 210          | 220        | 10                | 0.452       | 0.013          |
| PR19-018 | Red Hill    | 175          | 205        | 30                | 1.409       | 0.041          |
| PR19-019 | South Pan   | 50           | 75         | 25                | 0.332       | 0.010          |
| PR19-019 | South Pan   | 100          | 110        | 10                | 0.674       | 0.020          |
| PR19-019 | South Pan   | 135          | 255        | 120               | 0.498       | 0.015          |
| PR19-019 | South Pan   | 275          | 435        | 160               | 0.571       | 0.017          |
| includes | South Pan   | 320          | 330        | 10                | 1.201       | 0.035          |
| PR19-019 | South Pan   | 545          | 575        | 30                | 0.385       | 0.011          |
| PR19-020 | South Pan   | 225          | 245        | 20                | 1.054       | 0.031          |
| PR19-020 | South Pan   | 265          | 440        | 175               | 0.409       | 0.012          |

| Hole ID  | Target Area    | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|----------------|--------------|------------|-------------------|-------------|----------------|
| PR19-021 | South Pan      | 150          | 170        | 20                | 0.556       | 0.016          |
| PR19-021 | South Pan      | 260          | 325        | 65                | 0.394       | 0.011          |
| PR19-021 | South Pan      | 365          | 405        | 40                | 0.443       | 0.013          |
| PR19-022 | South Pan      | 435          | 480        | 45                | 0.395       | 0.012          |
| PR19-024 | Dynamite       | 135          | 205        | 70                | 0.632       | 0.018          |
| includes | Dynamite       | 145          | 160        | 15                | 1.260       | 0.037          |
| PR19-025 | Dynamite       | 305          | 325        | 20                | 0.692       | 0.020          |
| PR19-025 | Dynamite       | 360          | 425        | 65                | 0.448       | 0.013          |
| PR19-033 | Black Stallion | 65           | 85         | 20                | 0.965       | 0.028          |
| PR19-033 | Black Stallion | 130          | 140        | 10                | 0.336       | 0.010          |
| PR19-040 | Campbell       | 390          | 400        | 10                | 2.328       | 0.068          |
| PR19-042 | Banshee        | 0            | 10         | 10                | 0.426       | 0.012          |

### 10.4 2020 Drilling

Two drill programs were carried out in 2020 from January to June and October to December 2020 with the primary goals of:

- 1. Expanding known mineralization and geological understanding of the current resource;
- Increasing the known mineralization at the newly discovered Banshee zone;
- Expanding the resource between Red Hill and North Pan in order to merge both pits;
- 4. Identifying mineralization at the exploration target Mustang; and
- Sterilization drilling at the current and proposed waste dump sites.

The scope of the 2020 program was expanded from 2019 due to the approval of a permit allowing new ground disturbance. A total of 169 drillholes were completed throughout the Pan mine site in 2020. A total of 154 RC drillholes were completed by Boart Longyear from January to June in 2020 totaling 57,280 ft. A total of 15 PQ-size core drillholes were completed by Alford Drilling from October to December 2020 totaling 3,813.5 ft.

The same drilling procedures were implemented for the 2020 drill programs as used in 2019. All proposed drill sites were staked using the Pan Mine survey group and captured in UTM NAD 1983, Zone 11 in feet. Once a location was chosen for drilling, a pad was constructed with the proper dimensions for the rig to safely conduct drilling operations. A field geologist confirmed the hole location and lined up the drill rig before drilling operations commenced. Once the hole was completed, the drill crew conducted a downhole survey using a Reflex EZ-Gyro that measured the drillhole deviation. Once the drill was moved off the

<sup>\*</sup>All drillholes were angle to vertical holes, with azimuths and inclinations designed to intersect targeted structures as nearly as possible to perpendicular. Consequently, all intercepts reported here are believed to be approximately 'true width', however there may be some exceptions to this on a hole by hole basis particularly holes targeting near vertical structures.

hole, the Pan Mine survey group surveyed the final collar location and marked it with the drillhole ID and a wooden stake.

For the RC, samples were collected every 5 ft using a cyclone splitter attached to the rig that homogenizes and splits each sample into the appropriate size. Chips of each interval were collected for geological logging. Each sample was collected into a uniquely identified sample bag and placed in a bin that contained all the samples from that drillhole. The same QA/QC procedures were followed from 2019, but only 2 different types of standards were used along with coarse blank and field duplicates. The results of the QA/QC work are discussed in Section 11. All samples were shipped in a sealed bin to ALS in Reno, NV for analysis. ALS was provided with a sample list and confirmed receipt of the specified number of samples and correct sample ID's before proceeding with sample preparation.

Core holes, once complete were shipped to ALS Reno, NV where they were logged and sampled. Logging was done by Calibre geologists and geotech, cutting, and sampling was completed by ALS personnel. Core samples were taken at variable intervals as determined by the discretion of the geologist and placed into uniquely identified sample bags. Core samples were then transported to the preparatory facility at ALS followed by appropriate geochemical laboratory.

Mineralization was expanded at Red Hill, North Pan, Campbell, Syncline, and Black Stallion near mine targets. Table 10-3 and Table 10-4 summarizes the important intercepts from the 2020 drill programs using a cutoff grade of 0.20 g/t (0.006 oz/ton) Au. Drilling at these targets upgraded a portion of the known resource from Inferred to Indicated and expanded the known resource.

Table 10-3: Pan 2020 RC Drillhole Assay Highlights

| Hole     | Target Area | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|-------------|--------------|------------|-------------------|-------------|----------------|
| PR20-005 | Red Hill    | 125          | 135        | 10                | 0.911       | 0.027          |
| PR20-006 | Red Hill    | 90           | 195        | 105               | 0.745       | 0.022          |
| PR20-007 | Red Hill    | 75           | 90         | 15                | 1.051       | 0.031          |
| PR20-008 | Red Hill    | 115          | 215        | 100               | 0.761       | 0.022          |
| includes | Red Hill    | 175          | 185        | 10                | 1.148       | 0.034          |
| PR20-011 | Banshee     | 40           | 70         | 30                | 1.459       | 0.043          |
| PR20-013 | Banshee     | 20           | 110        | 90                | 0.738       | 0.022          |
| includes | Banshee     | 45           | 70         | 25                | 1.504       | 0.044          |
| PR20-014 | Banshee     | 125          | 160        | 35                | 1.147       | 0.034          |
| includes | Banshee     | 130          | 155        | 25                | 1.358       | 0.040          |
| PR20-016 | Banshee     | 115          | 240        | 125               | 0.917       | 0.027          |
| includes | Banshee     | 150          | 205        | 55                | 1.425       | 0.042          |
| PR20-031 | Red Hill    | 265          | 350        | 85                | 0.739       | 0.022          |
| includes | Red Hill    | 270          | 280        | 10                | 1.728       | 0.050          |
| PR20-034 | Red Hill    | 135          | 145        | 10                | 0.790       | 0.023          |
| PR20-040 | Campbell    | 15           | 260        | 245               | 0.741       | 0.022          |

| Hole     | Target Area | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|-------------|--------------|------------|-------------------|-------------|----------------|
| includes | Campbell    | 115          | 165        | 50                | 1.355       | 0.040          |
| PR20-046 | Banshee     | 170          | 190        | 20                | 0.787       | 0.040          |
|          |             |              |            |                   |             |                |
| PR20-050 | Banshee     | 35           | 45         | 10                | 1.393       | 0.041          |
| PR20-051 | Banshee     | 20           | 30         | 10                | 1.413       | 0.041          |
| PR20-052 | Red Hill    | 195          | 285        | 90                | 0.677       | 0.020          |
| includes | Red Hill    | 225          | 235        | 10                | 1.313       | 0.038          |
| PR20-054 | Banshee     | 125          | 160        | 35                | 0.716       | 0.021          |
| includes | Banshee     | 135          | 145        | 10                | 1.478       | 0.043          |
| PR20-055 | Red Hill    | 0            | 50         | 50                | 2.605       | 0.076          |
| PR20-062 | Banshee     | 0            | 20         | 20                | 0.671       | 0.020          |
| PR20-064 | Red Hill    | 310          | 360        | 50                | 0.678       | 0.020          |
| includes | Red Hill    | 320          | 335        | 15                | 1.283       | 0.037          |
| PR20-067 | Red Hill    | 260          | 325        | 65                | 0.697       | 0.020          |
| includes | Red Hill    | 265          | 275        | 10                | 1.458       | 0.043          |
| PR20-072 | Mustang     | 150          | 160        | 10                | 1.563       | 0.046          |
| PR20-074 | Mustang     | 60           | 65         | 5                 | 2.090       | 0.061          |
| PR20-077 | Mustang     | 95           | 105        | 10                | 1.553       | 0.045          |
| PR20-084 | Banshee     | 85           | 150        | 65                | 0.697       | 0.020          |
| PR20-092 | Red Hill    | 375          | 430        | 55                | 1.033       | 0.030          |
| includes | Red Hill    | 380          | 410        | 30                | 1.478       | 0.043          |
| PR20-107 | Banshee     | 140          | 190        | 50                | 0.988       | 0.029          |
| includes | Banshee     | 145          | 165        | 20                | 1.986       | 0.058          |
| PR20-120 | Red Hill    | 115          | 135        | 20                | 0.722       | 0.021          |
| PR20-130 | Red Hill    | 130          | 140        | 10                | 0.694       | 0.020          |

\*All drillholes were angle to vertical holes, with azimuths and inclinations designed to intersect targeted structures as nearly as possible to perpendicular. Consequently, all intercepts reported here are believed to be approximately 'true width', however there may be some exceptions to this on a hole by hole basis particularly holes targeting near vertical structures.

Table 10-4: Pan 2020 Core Drillhole Assay Highlights

| Hole      | Target Area | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|-----------|-------------|--------------|------------|-------------------|-------------|----------------|
| PCM20-001 | South Pan   | 88           | 112.6      | 24.6              | 0.726       | 0.022          |
| includes  | South Pan   | 103.8        | 107.7      | 3.9               | 1.050       | 0.032          |
| PCM20-001 | South Pan   | 153          | 163        | 10                | 0.318       | 0.010          |
| PCM20-003 | South Pan   | 26.2         | 44.1       | 17.9              | 0.859       | 0.026          |
| includes  | South Pan   | 30.8         | 32.2       | 1.4               | 1.140       | 0.034          |
| includes  | South Pan   | 37           | 39.3       | 2.3               | 1.535       | 0.046          |

| Hole      | Target Area  | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|-----------|--------------|--------------|------------|-------------------|-------------|----------------|
| PCM20-004 | Red Hill Pit | 142          | 163        | 21                | 0.479       | 0.014          |
| PCM20-004 | Red Hill Pit | 177          | 203.8      | 26.8              | 0.691       | 0.021          |
| includes  | Red Hill Pit | 182          | 190.5      | 8.5               | 1.466       | 0.044          |
| PCM20-004 | Red Hill Pit | 212          | 237        | 25                | 0.693       | 0.021          |
| includes  | Red Hill Pit | 227          | 232        | 5                 | 1.845       | 0.055          |
| PCM20-004 | Red Hill Pit | 256.4        | 266.6      | 10.2              | 0.251       | 0.008          |
| PCM20-004 | Red Hill Pit | 292          | 302        | 10                | 0.412       | 0.012          |
| PCM20-005 | Banshee      | 102.5        | 127        | 24.5              | 0.344       | 0.010          |
| PCM20-006 | North Pit    | 0            | 57         | 57                | 0.593       | 0.018          |
| includes  | North Pit    | 0            | 10         | 10                | 1.615       | 0.048          |
| PCM20-006 | North Pit    | 82.5         | 102        | 19.5              | 0.281       | 0.008          |
| PCM20-007 | North Pit    | 6.8          | 30         | 23.2              | 0.478       | 0.014          |
| PCM20-008 | South Pan    | 0            | 76         | 76                | 0.935       | 0.028          |
| includes  | South Pan    | 0            | 11         | 11                | 1.400       | 0.042          |
| includes  | South Pan    | 13.5         | 23         | 9.5               | 1.173       | 0.035          |
| includes  | South Pan    | 37           | 45.5       | 8.5               | 1.509       | 0.045          |
| includes  | South Pan    | 50.5         | 56         | 5.5               | 2.070       | 0.062          |
| PCM20-008 | South Pan    | 146          | 161        | 15                | 0.578       | 0.017          |
| PCM20-009 | South Pan    | 0            | 17.5       | 17.5              | 0.992       | 0.030          |
| includes  | South Pan    | 4            | 12         | 8                 | 1.318       | 0.040          |
| includes  | South Pan    | 15           | 17.5       | 2.5               | 1.135       | 0.034          |
| PCM20-009 | South Pan    | 34           | 44         | 10                | 0.627       | 0.019          |
| PCM20-009 | South Pan    | 49           | 61.5       | 12.5              | 0.519       | 0.016          |
| PCM20-009 | South Pan    | 94.5         | 175.5      | 81                | 0.854       | 0.026          |
| includes  | South Pan    | 109          | 130        | 21                | 1.954       | 0.059          |
| PCM20-009 | South Pan    | 180.5        | 197.8      | 17.3              | 0.406       | 0.012          |
| PCM20-010 | North Pit    | 0            | 70.5       | 70.5              | 0.926       | 0.028          |
| includes  | North Pit    | 0            | 3          | 3                 | 1.460       | 0.044          |
| includes  | North Pit    | 23           | 38         | 15                | 1.762       | 0.053          |
| PCM20-010 | North Pit    | 86           | 109        | 23                | 0.568       | 0.017          |
| PCM20-011 | North Pit    | 0            | 12.5       | 12.5              | 3.088       | 0.093          |
| PCM20-011 | North Pit    | 14.5         | 111        | 96.5              | 1.008       | 0.030          |
| includes  | North Pit    | 25           | 30         | 5                 | 2.060       | 0.062          |
| includes  | North Pit    | 35           | 47         | 12                | 1.480       | 0.044          |
| includes  | North Pit    | 55.5         | 65.5       | 10                | 1.755       | 0.053          |
| includes  | North Pit    | 75           | 80         | 5                 | 1.720       | 0.052          |
| includes  | North Pit    | 84           | 87         | 3                 | 1.770       | 0.053          |
| PCM20-011 | North Pit    | 146.3        | 177.6      | 31.3              | 0.616       | 0.018          |

| Hole      | Target Area  | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|-----------|--------------|--------------|------------|-------------------|-------------|----------------|
| includes  | North Pit    | 171.6        | 174        | 2.4               | 1.300       | 0.039          |
| PCM20-011 | North Pit    | 179.5        | 202        | 22.5              | 0.730       | 0.022          |
| includes  | North Pit    | 179.5        | 182        | 2.5               | 3.050       | 0.092          |
| PCM20-012 | North Pit    | 0            | 24         | 24                | 0.416       | 0.012          |
| PCM20-012 | North Pit    | 42           | 77         | 35                | 0.422       | 0.013          |
| PCM20-013 | Banshee      | 53.5         | 74         | 20.5              | 0.919       | 0.028          |
| includes  | Banshee      | 53.5         | 58.5       | 5                 | 1.860       | 0.056          |
| PCM20-014 | Red Hill Pit | 197          | 207        | 10                | 2.718       | 0.082          |
| PCM20-014 | Red Hill Pit | 220          | 235        | 15                | 0.375       | 0.011          |
| PCM20-014 | Red Hill Pit | 261.5        | 287        | 25.5              | 1.625       | 0.049          |
| includes  | Red Hill Pit | 261.5        | 277        | 15.5              | 2.284       | 0.069          |
| PCM20-014 | Red Hill Pit | 337          | 357        | 20                | 0.314       | 0.009          |
| PCM20-014 | Red Hill Pit | 378          | 400.5      | 22.5              | 0.456       | 0.014          |
| PCM20-015 | North Pit    | 34           | 58         | 24                | 0.308       | 0.009          |
| PCM20-015 | North Pit    | 153          | 167        | 14                | 0.297       | 0.009          |
| PCM20-015 | North Pit    | 191          | 201        | 10                | 0.207       | 0.006          |
| PCM20-015 | North Pit    | 206          | 231        | 25                | 0.264       | 0.008          |

Most of the drilling during the 2020 program focused around expanding and defining the newly discovered Banshee zone. It accounted for 45% (69 drillholes) of the RC drillholes and 20% (3 drillholes) of the core holes. The goal of the Banshee drilling was to identify the extent of mineralization in all directions and provide as much measured and indicated resource as possible. Drilling at Banshee identified a core of high-grade drill intercepts that was surrounded by low to zero grade drilling. The mineralization is similar to North Pan which is characterized by silicification and brecciation near the Pilot – Devils Gate contact which is the host for the gold. Banshee core holes corroborate nearby RC intersections.

A significant amount of gold mineralization was encountered between North Pan and Red Hill in 12 holes drilled during the 2020 program. The mineralization between the two target areas displays the same characteristics: silicification and brecciation near the Pilot-Devils Gate contact with jasperoid alteration.

Eight RC holes were drilled at the Mustang target northwest of the Pan mine. Six of the 8 RC holes encountered significant gold mineralization ranging from near surface to 265 ft below the surface. The RC holes drilled were vertical and angled northeast and southwest to understand the trends of the mineralization. The RC holes at Mustang collar in limestone, with the mineralization hosted in brecciated and silicified limestone. Hematite alteration is present but no real jasperoid alteration is seen. This style of mineralization is distinct from that seen at the Pan Mine.

<sup>\*</sup>All drillholes were angle to vertical holes, with azimuths and inclinations designed to intersect targeted structures as nearly as possible to perpendicular. Consequently, all intercepts reported here are believed to be approximately 'true width', however there may be some exceptions to this on a hole by hole basis particularly holes targeting near vertical structures.

Thirteen RC drillholes were designed and completed as condemnation holes to test if mineralization is present below the North Pan waste dump ramp and a potential new waste dump site. Four drillholes were completed on the current North Pan waste dump ramp and encountered only minor mineralization that is considered not significant. The other 9 drillholes were completed over a potential new waste dump site northeast of the current North Pan pit. Drillhole PR20-125 at 405-425 ft deep returned 0.266 g/t (0.008 oz/ton) Au and was the only condemnation hole in this area that intersected any significant gold mineralization.

Core drilling was focused in South Pit, North Pit, Red Hill Pit, and Banshee. Moderate to significant mineralization was encountered in the 6 core holes completed in North Pit, ranging from at surface to end-of-hole.

## 10.5 2021 Drilling

Calibre carried out 2 drill programs in 2021 from January to February, and October to December 2021 that consisted of the completion of 63 RC drillholes totaling 33,321.5 ft, 1 core hole that drilled 400 ft at PQ then transitioned to HQ for 356 ft (totaling 756 ft), and 1 HQ core hole totaling 527 ft. Eleven drillholes were completed by Boart Longyear and 54 drillholes were completed by Alford Drilling. The goal of the 2021 drill programs was to expand and upgrade the known resource and explore for new mineralization within the mine area.

The same drilling procedures were implemented for the 2021 drill programs as used in 2020. All proposed drill sites were staked using the Pan Mine survey equipment by field personnel and captured in UTM NAD 1983, Zone 11 in feet. Once a location was chosen for drilling, a pad was constructed with the proper dimensions for the rig to safety conduct drilling operations. A field geologist confirmed the hole location and lined up the drill rig before drilling operations commenced. Once the hole was completed, the drill crew conducted a downhole survey using a Reflex EZ-Gyro that measured the drillhole deviation or IDS was called to site to survey the hole. Drill crews would then abandon the hole and move to the next pad. Once the drill was moved off the hole, the field personnel surveyed the final collar location and marked it with the drillhole ID and a wooden stake.

For the RC, samples were collected every 5 ft using a cyclone splitter attached to the rig that homogenizes and splits each sample into the appropriate size. Chips of each interval were collected for geological logging. Each sample was collected into a uniquely identified sample bag and placed in a bin that contained all the samples from that drillhole.

The same QA/QC procedures were followed from 2020, but 4 different types of standards were used as well as coarse blanks and field duplicates. The results of the QA/QC work is discussed in Section 11. All samples were shipped in a bin to ALS in Reno, NV for analysis. ALS was provided with a sample list and confirmed receipt of the specified number of samples and correct sample ID's before proceeding with sample preparation.

Core holes, once complete were shipped to Elko, NV to the Calibre core logging facility where they were logged and sampled. Logging was completed by Calibre geologists and geotech, cutting, and sampling was completed by Modern Lands Development personnel. Core samples were taken at variable intervals

as determined by the discretion of the geologist and placed into uniquely identified sample bags. The samples were placed into bins and shipped to ALS Reno, NV for geochemical analysis.

The 2021 drilling focused on the following target areas: Black Stallion South, Dune, Dynamite, Orpiment Alley, Pegasus, South Pan, South Pit. Table 10-5 summarizes the important intercepts from the 2021 drill program using a cutoff grade of 0.20 g/t (0.006 oz/ton) Au and length greater than or equal to 10 ft.

Table 10-5: Pan 2021 Drillhole Assay Highlights

| Hole      | Target Area             | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|-----------|-------------------------|--------------|------------|-------------------|-------------|----------------|
| PCM21-001 | South Pan               | 149.5        | 227        | 77.5              | 0.955       | 0.029          |
| includes  | South Pan               | 159.5        | 178        | 18.5              | 1.371       | 0.041          |
| includes  | South Pan               | 196          | 199        | 3                 | 1.050       | 0.032          |
| includes  | South Pan               | 204          | 217        | 13                | 1.646       | 0.049          |
| PCM21-001 | South Pan               | 230.5        | 261        | 30.5              | 0.602       | 0.018          |
| includes  | South Pan               | 256          | 261        | 5                 | 1.325       | 0.040          |
| PCM21-001 | South Pan               | 292          | 308.3      | 16.3              | 0.452       | 0.014          |
| PCM21-001 | South Pan               | 312.5        | 337        | 24.5              | 0.484       | 0.015          |
| PCM21-001 | South Pan               | 452          | 476        | 24                | 0.356       | 0.011          |
| PCM21-001 | South Pan               | 499          | 567        | 68                | 0.354       | 0.011          |
| PR21-001  | Pegasus                 | 255          | 335        | 80                | 0.519       | 0.016          |
| includes  | Pegasus                 | 285          | 290        | 5                 | 1.060       | 0.032          |
| PR21-001  | Pegasus                 | 340          | 425        | 85                | 0.437       | 0.013          |
| PR21-001  | Pegasus                 | 430          | 440        | 10                | 0.403       | 0.012          |
| PR21-001  | Pegasus                 | 455          | 545        | 90                | 0.423       | 0.013          |
| PR21-001  | Pegasus                 | 550          | 590        | 40                | 0.611       | 0.018          |
| includes  | Pegasus                 | 550          | 555        | 5                 | 1.515       | 0.045          |
| includes  | Pegasus                 | 560          | 565        | 5                 | 1.060       | 0.032          |
| PR21-001  | Pegasus                 | 600          | 660        | 60                | 0.299       | 0.009          |
| PR21-002  | Pegasus                 | 225          | 235        | 10                | 0.418       | 0.013          |
| PR21-002  | Pegasus                 | 260          | 285        | 25                | 0.324       | 0.010          |
| PR21-002  | Pegasus                 | 290          | 375        | 85                | 0.574       | 0.017          |
| includes  | Pegasus                 | 305          | 310        | 5                 | 1.025       | 0.031          |
| PR21-003  | Pegasus                 | 505          | 520        | 15                | 0.388       | 0.012          |
| PR21-010  | Condemnation North dump | 740          | 760        | 20                | 0.235       | 0.007          |
| PR21-014  | Black Stallion South    | 25           | 40         | 15                | 0.649       | 0.019          |
| PR21-016  | Black Stallion South    | 65           | 75         | 10                | 0.320       | 0.010          |
| PR21-017  | Black Stallion South    | 60           | 90         | 30                | 0.649       | 0.019          |
| PR21-020  | South Pit               | 20           | 30         | 10                | 0.378       | 0.011          |
| PR21-020  | South Pit               | 45           | 60         | 15                | 0.350       | 0.011          |

| Hole     | Target Area          | From       | To         | Interval    | Au<br>(a/t) | Au<br>(oz/ton)    |
|----------|----------------------|------------|------------|-------------|-------------|-------------------|
| DD24 020 | South Pit            | (ft)<br>65 | (ft)<br>85 | (ft)*<br>20 | (g/t)       | (oz/ton)<br>0.013 |
| PR21-020 | South Pit            | 445        |            | 10          | 0.442       |                   |
| PR21-020 |                      |            | 455        |             | 0.336       | 0.010             |
| PR21-021 | South Pit            | 0          | 100        | 100         | 0.400       | 0.012             |
| PR21-021 | South Pit            | 205        | 215        | 10          | 0.223       | 0.007             |
| PR21-021 | South Pit            | 275        | 285        | 10          | 0.290       | 0.009             |
| PR21-021 | South Pit            | 300        | 315        | 15          | 0.367       | 0.011             |
| PR21-021 | South Pit            | 320        | 330        | 10          | 1.085       | 0.033             |
| PR21-022 | South Pit            | 0          | 40         | 40          | 0.321       | 0.010             |
| PR21-022 | South Pit            | 80         | 90         | 10          | 0.388       | 0.012             |
| PR21-022 | South Pit            | 95         | 205        | 110         | 0.646       | 0.019             |
| includes | South Pit            | 95         | 100        | 5           | 1.410       | 0.042             |
| includes | South Pit            | 175        | 185        | 10          | 1.758       | 0.053             |
| PR21-022 | South Pit            | 245        | 260        | 15          | 0.242       | 0.007             |
| PR21-022 | South Pit            | 270        | 350        | 80          | 0.676       | 0.020             |
| includes | South Pit            | 310        | 320        | 10          | 1.065       | 0.032             |
| PR21-025 | Black Stallion South | 10         | 40         | 30          | 0.413       | 0.012             |
| PR21-027 | Black Stallion South | 0          | 25         | 25          | 0.292       | 0.009             |
| PR21-027 | Black Stallion South | 65         | 80         | 15          | 1.076       | 0.032             |
| PR21-033 | Black Stallion South | 35         | 60         | 25          | 0.517       | 0.016             |
| PR21-034 | South Pit            | 20         | 30         | 10          | 0.779       | 0.023             |
| PR21-035 | South Pit            | 0          | 25         | 25          | 0.477       | 0.014             |
| PR21-035 | South Pit            | 40         | 60         | 20          | 0.311       | 0.009             |
| PR21-035 | South Pit            | 65         | 75         | 10          | 0.348       | 0.010             |
| PR21-035 | South Pit            | 220        | 235        | 15          | 0.369       | 0.011             |
| PR21-036 | South Pit            | 140        | 155        | 15          | 0.518       | 0.016             |
| PR21-037 | South Pit            | 70         | 80         | 10          | 0.874       | 0.026             |
| PR21-039 | Black Stallion South | 95         | 130        | 35          | 0.379       | 0.011             |
| PR21-040 | Black Stallion South | 260        | 300        | 40          | 0.441       | 0.013             |
| PR21-040 | Black Stallion South | 315        | 400        | 85          | 0.750       | 0.023             |
| includes | Black Stallion South | 330        | 335        | 5           | 1.640       | 0.049             |
| includes | Black Stallion South | 370        | 375        | 5           | 1.500       | 0.045             |
| PR21-043 | Dune                 | 95         | 115        | 20          | 0.360       | 0.011             |
| PR21-044 | Pegasus              | 235        | 295        | 60          | 0.580       | 0.017             |
| includes | Pegasus              | 245        | 250        | 5           | 1.550       | 0.047             |
| includes | Pegasus              | 275        | 280        | 5           | 1.035       | 0.031             |
| PR21-044 | Pegasus              | 305        | 340        | 35          | 0.376       | 0.011             |
| PR21-044 | Pegasus              | 360        | 385        | 25          | 0.452       | 0.014             |
| PR21-044 | Pegasus              | 635        | 675        | 40          | 0.294       | 0.009             |
|          | <del>-</del>         |            | I.         | I.          | l           | I.                |

| PR21-045   Pegasus   200   250   50   2.022   0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hole     | Target Area | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|--------------|------------|-------------------|-------------|----------------|
| Includes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR21-045 | Pegasus     | 200          | 250        | 50                | 2.022       | 0.061          |
| PR21-045         Pegasus         255         265         10         0.973         0.029           includes         Pegasus         255         260         5         1,030         0.031           PR21-045         Pegasus         270         285         15         0.495         0.015           PR21-045         Pegasus         290         300         10         0.364         0.011           PR21-045         Pegasus         305         365         60         0.730         0.022           includes         Pegasus         325         335         10         1.470         0.044           PR21-045         Pegasus         445         465         20         0.535         0.016           PR21-045         Pegasus         440         490         10         0.307         0.009           PR21-046         Dune         75         85         10         0.304         0.009           PR21-046         Dune         215         230         15         0.462         0.014           PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         520         53                                                                                                           | includes | Pegasus     | 205          | 225        | 20                | 3.889       | 0.117          |
| includes         Pegasus         255         260         5         1.030         0.031           PR21-045         Pegasus         270         285         15         0.495         0.015           PR21-045         Pegasus         290         300         10         0.364         0.011           PR21-045         Pegasus         305         365         60         0.730         0.022           includes         Pegasus         325         335         10         1.470         0.044           PR21-045         Pegasus         445         465         20         0.535         0.016           PR21-045         Pegasus         480         490         10         0.307         0.009           PR21-046         Dune         75         85         10         0.304         0.009           PR21-046         Dune         215         230         15         0.404         0.012           PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         470         485         15         1.407         0.042           PR21-047         Pegasus         580         59                                                                                                           | includes | Pegasus     | 245          | 250        | 5                 | 1.620       | 0.049          |
| PR21-045         Pegasus         270         285         15         0.495         0.015           PR21-045         Pegasus         290         300         10         0.364         0.011           PR21-045         Pegasus         305         365         60         0.730         0.022           includes         Pegasus         325         335         10         1.470         0.044           PR21-045         Pegasus         445         465         20         0.535         0.016           PR21-045         Pegasus         440         480         10         0.307         0.009           PR21-046         Dune         75         85         10         0.307         0.009           PR21-046         Dune         90         105         15         0.404         0.012           PR21-046         Dune         215         230         15         0.462         0.014           PR21-047         Pegasus         465         485         20         1.278         0.032           PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590 </td <td>PR21-045</td> <td>Pegasus</td> <td>255</td> <td>265</td> <td>10</td> <td>0.973</td> <td>0.029</td> | PR21-045 | Pegasus     | 255          | 265        | 10                | 0.973       | 0.029          |
| PR21-045         Pegasus         290         300         10         0.364         0.011           PR21-045         Pegasus         305         365         60         0.730         0.022           includes         Pegasus         325         335         10         1.470         0.044           PR21-045         Pegasus         445         465         20         0.535         0.016           PR21-046         Dune         75         85         10         0.304         0.009           PR21-046         Dune         75         85         10         0.304         0.009           PR21-046         Dune         90         105         15         0.404         0.012           PR21-046         Dune         215         230         15         0.462         0.014           PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         595         610                                                                                                                  | includes | Pegasus     | 255          | 260        | 5                 | 1.030       | 0.031          |
| PR21-045         Pegasus         305         365         60         0.730         0.022           includes         Pegasus         325         335         10         1.470         0.044           PR21-045         Pegasus         445         465         20         0.535         0.016           PR21-045         Pegasus         480         490         10         0.307         0.009           PR21-046         Dune         75         85         10         0.304         0.009           PR21-046         Dune         90         105         15         0.404         0.012           PR21-046         Dune         215         230         15         0.462         0.014           PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         470         485         15         1.407         0.042           PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         630         640 </td <td>PR21-045</td> <td>Pegasus</td> <td>270</td> <td>285</td> <td>15</td> <td>0.495</td> <td>0.015</td> | PR21-045 | Pegasus     | 270          | 285        | 15                | 0.495       | 0.015          |
| includes         Pegasus         325         335         10         1.470         0.044           PR21-045         Pegasus         445         465         20         0.535         0.016           PR21-045         Pegasus         480         490         10         0.307         0.009           PR21-046         Dune         75         85         10         0.304         0.009           PR21-046         Dune         90         105         15         0.404         0.012           PR21-046         Dune         215         230         15         0.462         0.014           PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         470         485         15         1.407         0.042           PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         630         640 </td <td>PR21-045</td> <td>Pegasus</td> <td>290</td> <td>300</td> <td>10</td> <td>0.364</td> <td>0.011</td> | PR21-045 | Pegasus     | 290          | 300        | 10                | 0.364       | 0.011          |
| PR21-045         Pegasus         445         465         20         0.535         0.016           PR21-045         Pegasus         480         490         10         0.307         0.009           PR21-046         Dune         75         85         10         0.304         0.009           PR21-046         Dune         90         105         15         0.404         0.012           PR21-046         Dune         215         230         15         0.462         0.014           PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         470         485         15         1.407         0.042           PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-047         Pegasus         680         690 </td <td>PR21-045</td> <td>Pegasus</td> <td>305</td> <td>365</td> <td>60</td> <td>0.730</td> <td>0.022</td> | PR21-045 | Pegasus     | 305          | 365        | 60                | 0.730       | 0.022          |
| PR21-045         Pegasus         480         490         10         0.307         0.009           PR21-046         Dune         75         85         10         0.304         0.009           PR21-046         Dune         90         105         15         0.404         0.012           PR21-046         Dune         215         230         15         0.462         0.014           PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         470         485         15         1.407         0.042           PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         595         610         15         0.286         0.009           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-047         Pegasus         680         690 </td <td>includes</td> <td>Pegasus</td> <td>325</td> <td>335</td> <td>10</td> <td>1.470</td> <td>0.044</td> | includes | Pegasus     | 325          | 335        | 10                | 1.470       | 0.044          |
| PR21-045         Pegasus         480         490         10         0.307         0.009           PR21-046         Dune         75         85         10         0.304         0.009           PR21-046         Dune         90         105         15         0.404         0.012           PR21-046         Dune         215         230         15         0.462         0.014           PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         470         485         15         1.407         0.042           PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         595         610         15         0.286         0.009           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-047         Pegasus         680         690 </td <td>PR21-045</td> <td>Pegasus</td> <td>445</td> <td>465</td> <td>20</td> <td>0.535</td> <td>0.016</td> | PR21-045 | Pegasus     | 445          | 465        | 20                | 0.535       | 0.016          |
| PR21-046         Dune         90         105         15         0.404         0.012           PR21-046         Dune         215         230         15         0.462         0.014           PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         470         485         15         1.407         0.042           PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         595         610         15         0.286         0.009           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-048         Dune         5         55 <td>PR21-045</td> <td></td> <td>480</td> <td>490</td> <td>10</td> <td>0.307</td> <td>0.009</td>              | PR21-045 |             | 480          | 490        | 10                | 0.307       | 0.009          |
| PR21-046         Dune         215         230         15         0.462         0.014           PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         470         485         15         1.407         0.042           PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         595         610         15         0.286         0.009           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-048         Dune         5         55         50         0.357         0.011           PR21-048         Dune         110         140 </td <td>PR21-046</td> <td>Dune</td> <td>75</td> <td>85</td> <td>10</td> <td>0.304</td> <td>0.009</td>      | PR21-046 | Dune        | 75           | 85         | 10                | 0.304       | 0.009          |
| PR21-047         Pegasus         465         485         20         1.278         0.038           includes         Pegasus         470         485         15         1.407         0.042           PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         595         610         15         0.286         0.009           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-048         Dune         5         55         50         0.357         0.011           PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         110         140         30         0.779         0.023           includes         Dune         115         120         5         1.555         0.047           PR21-050         Dune         80         85                                                                                                                       | PR21-046 | Dune        | 90           | 105        | 15                | 0.404       | 0.012          |
| includes         Pegasus         470         485         15         1.407         0.042           PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         595         610         15         0.286         0.009           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-048         Dune         5         55         50         0.357         0.011           PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         110         140         30         0.779         0.023           includes         Dune         115         120         5         1.555         0.047           PR21-048         Dune         115         120         5         1.555         0.047           PR21-048         Dune         80         100         <                                                                                                                | PR21-046 | Dune        | 215          | 230        | 15                | 0.462       | 0.014          |
| PR21-047         Pegasus         520         535         15         0.338         0.010           PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         595         610         15         0.286         0.009           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-048         Dune         5         55         50         0.357         0.011           PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         110         140         30         0.779         0.023           includes         Dune         115         120         5         1.555         0.047           PR21-048         Dune         115         120         5         1.555         0.048           PR21-048         Dune         115         120         5         1.555         0.047           PR21-050         Dune         80         100         2                                                                                                                    | PR21-047 | Pegasus     | 465          | 485        | 20                | 1.278       | 0.038          |
| PR21-047         Pegasus         580         590         10         0.778         0.023           PR21-047         Pegasus         595         610         15         0.286         0.009           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-048         Dune         5         55         50         0.357         0.011           PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         110         140         30         0.779         0.023           includes         Dune         115         120         5         1.555         0.047           PR21-050         Dune         80         100         20         0.521         0.016           includes         Dune         80         85         5                                                                                                                         | includes | Pegasus     | 470          | 485        | 15                | 1.407       | 0.042          |
| PR21-047         Pegasus         595         610         15         0.286         0.009           PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-048         Dune         5         55         50         0.357         0.011           PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         110         140         30         0.779         0.023           includes         Dune         115         120         5         1.555         0.047           PR21-050         Dune         80         100         20         0.521         0.016           includes         Dune         80         85         5         1.040         0.031           PR21-052         Dune         60         85         25         1.108         0.033           includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60                                                                                                                          | PR21-047 | Pegasus     | 520          | 535        | 15                | 0.338       | 0.010          |
| PR21-047         Pegasus         630         640         10         0.370         0.011           PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-048         Dune         5         55         50         0.357         0.011           PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         110         140         30         0.779         0.023           includes         Dune         115         120         5         1.555         0.047           PR21-050         Dune         80         100         20         0.521         0.016           includes         Dune         80         85         5         1.040         0.031           PR21-052         Dune         60         85         25         1.108         0.033           includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         365         385         20                                                                                                                         | PR21-047 | Pegasus     | 580          | 590        | 10                | 0.778       | 0.023          |
| PR21-047         Pegasus         680         690         10         0.213         0.006           PR21-048         Dune         5         55         50         0.357         0.011           PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         110         140         30         0.779         0.023           includes         Dune         115         120         5         1.555         0.047           PR21-050         Dune         80         100         20         0.521         0.016           includes         Dune         80         85         5         1.040         0.031           PR21-052         Dune         60         85         25         1.108         0.033           includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20                                                                                                                              | PR21-047 | Pegasus     | 595          | 610        | 15                | 0.286       | 0.009          |
| PR21-048         Dune         5         55         50         0.357         0.011           PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         110         140         30         0.779         0.023           includes         Dune         115         120         5         1.555         0.047           PR21-050         Dune         80         100         20         0.521         0.016           includes         Dune         80         85         5         1.040         0.031           PR21-052         Dune         60         85         25         1.108         0.033           includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         355         360         5         1.005         0.030           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20                                                                                                                              | PR21-047 | Pegasus     | 630          | 640        | 10                | 0.370       | 0.011          |
| PR21-048         Dune         95         105         10         0.262         0.008           PR21-048         Dune         110         140         30         0.779         0.023           includes         Dune         115         120         5         1.555         0.047           PR21-050         Dune         80         100         20         0.521         0.016           includes         Dune         80         85         5         1.040         0.031           PR21-052         Dune         60         85         25         1.108         0.033           includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         355         360         5         1.005         0.030           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30 <td>PR21-047</td> <td>Pegasus</td> <td>680</td> <td>690</td> <td>10</td> <td>0.213</td> <td>0.006</td>                | PR21-047 | Pegasus     | 680          | 690        | 10                | 0.213       | 0.006          |
| PR21-048         Dune         110         140         30         0.779         0.023           includes         Dune         115         120         5         1.555         0.047           PR21-050         Dune         80         100         20         0.521         0.016           includes         Dune         80         85         5         1.040         0.031           PR21-052         Dune         60         85         25         1.108         0.033           includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         355         360         5         1.005         0.030           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230                                                                                                                             | PR21-048 | Dune        | 5            | 55         | 50                | 0.357       | 0.011          |
| includes         Dune         115         120         5         1.555         0.047           PR21-050         Dune         80         100         20         0.521         0.016           includes         Dune         80         85         5         1.040         0.031           PR21-052         Dune         60         85         25         1.108         0.033           includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         355         360         5         1.005         0.030           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265                                                                                                                         | PR21-048 | Dune        | 95           | 105        | 10                | 0.262       | 0.008          |
| PR21-050         Dune         80         100         20         0.521         0.016           includes         Dune         80         85         5         1.040         0.031           PR21-052         Dune         60         85         25         1.108         0.033           includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         355         360         5         1.005         0.030           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290                                                                                                                    | PR21-048 | Dune        | 110          | 140        | 30                | 0.779       | 0.023          |
| includes         Dune         80         85         5         1.040         0.031           PR21-052         Dune         60         85         25         1.108         0.033           includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         355         360         5         1.005         0.030           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290         15         0.370         0.011                                                                                                                                                                           | includes | Dune        | 115          | 120        | 5                 | 1.555       | 0.047          |
| PR21-052         Dune         60         85         25         1.108         0.033           includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         355         360         5         1.005         0.030           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290         15         0.370         0.011                                                                                                                                                                                                                                                                       | PR21-050 | Dune        | 80           | 100        | 20                | 0.521       | 0.016          |
| includes         Dune         65         80         15         1.563         0.047           PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         355         360         5         1.005         0.030           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290         15         0.370         0.011                                                                                                                                                                                                                                                                                                                                                                    | includes | Dune        | 80           | 85         | 5                 | 1.040       | 0.031          |
| PR21-053         Dynamite         340         400         60         1.293         0.039           includes         Dynamite         355         360         5         1.005         0.030           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290         15         0.370         0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PR21-052 | Dune        | 60           | 85         | 25                | 1.108       | 0.033          |
| includes         Dynamite         355         360         5         1.005         0.030           includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290         15         0.370         0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | includes | Dune        | 65           | 80         | 15                | 1.563       | 0.047          |
| includes         Dynamite         365         385         20         2.919         0.088           PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290         15         0.370         0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PR21-053 | Dynamite    | 340          | 400        | 60                | 1.293       | 0.039          |
| PR21-054         Dune         65         85         20         0.327         0.010           PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290         15         0.370         0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | includes | Dynamite    | 355          | 360        | 5                 | 1.005       | 0.030          |
| PR21-055         Dynamite         210         240         30         1.458         0.044           includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290         15         0.370         0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | includes | Dynamite    | 365          | 385        | 20                | 2.919       | 0.088          |
| includes         Dynamite         215         230         15         2.322         0.070           PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290         15         0.370         0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PR21-054 | Dune        | 65           | 85         | 20                | 0.327       | 0.010          |
| PR21-055         Dynamite         250         265         15         0.633         0.019           PR21-055         Dynamite         275         290         15         0.370         0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PR21-055 | Dynamite    | 210          | 240        | 30                | 1.458       | 0.044          |
| PR21-055 Dynamite 275 290 15 0.370 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | includes | Dynamite    | 215          | 230        | 15                | 2.322       | 0.070          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PR21-055 | Dynamite    | 250          | 265        | 15                | 0.633       | 0.019          |
| PR21-055 Dynamite 315 340 25 0.641 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR21-055 | Dynamite    | 275          | 290        | 15                | 0.370       | 0.011          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PR21-055 | Dynamite    | 315          | 340        | 25                | 0.641       | 0.019          |

| Hole     | Target Area    | From (ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|----------------|-----------|------------|-------------------|-------------|----------------|
| PR21-055 | Dynamite       | 350       | 385        | 35                | 0.697       | 0.021          |
| includes | Dynamite       | 375       | 380        | 5                 | 1.520       | 0.046          |
| PR21-055 | Dynamite       | 485       | 495        | 10                | 0.260       | 0.008          |
| PR21-056 | Dune           | 40        | 95         | 55                | 0.551       | 0.017          |
| includes | Dune           | 50        | 60         | 10                | 1.165       | 0.035          |
| PR21-056 | Dune           | 120       | 130        | 10                | 0.387       | 0.012          |
| PR21-056 | Dune           | 140       | 155        | 15                | 0.227       | 0.007          |
| PR21-056 | Dune           | 160       | 170        | 10                | 0.271       | 0.008          |
| PR21-056 | Dune           | 210       | 235        | 25                | 0.375       | 0.011          |
| PR21-057 | Dynamite       | 35        | 65         | 30                | 0.272       | 0.008          |
| PR21-057 | Dynamite       | 195       | 215        | 20                | 0.257       | 0.008          |
| PR21-057 | Dynamite       | 255       | 320        | 65                | 0.392       | 0.012          |
| PR21-058 | Dune           | 35        | 50         | 15                | 0.273       | 0.008          |
| PR21-058 | Dune           | 55        | 85         | 30                | 0.443       | 0.013          |
| includes | Dune           | 55        | 60         | 5                 | 1.060       | 0.032          |
| PR21-058 | Dune           | 95        | 145        | 50                | 0.954       | 0.029          |
| includes | Dune           | 100       | 125        | 25                | 1.332       | 0.040          |
| PR21-062 | Orpiment alley | 245       | 295        | 50                | 0.506       | 0.015          |
| PR21-062 | Orpiment alley | 465       | 475        | 10                | 0.464       | 0.014          |

\*All drillholes were angle to vertical holes, with azimuths and inclinations designed to intersect targeted structures as nearly as possible to perpendicular. Consequently, all intercepts reported here are believed to be approximately 'true width', however there may be some exceptions to this on a hole by hole basis particularly holes targeting near vertical structures.

The bulk of the drilling was completed in Black Stallion South and Dune, with 29% (18 drillholes) and 17% (11 drillholes), respectively.

Five of the 6 RC holes completed in Pegasus resulted in significant intersections at ~200 ft depth and provide a critical connection between South Pit and Dynamite Pit.

Five RC drillholes were designed and completed as condemnation holes to test if mineralization is present below the proposed North Pan waste dump site. Four drillholes were completed on and encountered only minor mineralization that is considered not significant. Drillhole PR21-010 encountered 20.00 ft of 0.23 g/t (0.007oz/ton) Au at 740.00 ft in hole PR21-010 and was the only condemnation hole in this area that intersected any significant gold mineralization.

# 10.6 2022 Drilling

The 2022 drill program was carried out from January to November 2022 and consisted of the completion of 240 RC drillholes totaling 135,330 ft and 21 HQ-size core holes totaling 10,310 ft. All 21 HQ-sized core holes were completed by Alford Drilling. A total of 193 RC drillholes were completed by Boart Longyear

and 48 RC drillholes were completed by Alford Drilling. The goal of the 2022 drill program was to expand and upgrade the known resource and explore for new mineralization within and outside the mine area.

The same drilling procedures were implemented for the 2022 drill programs as used in 2021. All proposed drill sites were staked using the Pan Mine survey equipment by field personnel and captured in UTM NAD 1983, Zone 11 in feet. Once a location was chosen for drilling, a pad was constructed with the proper dimensions for the rig to safety conduct drilling operations. A field geologist confirmed the hole location and lined up the drill rig before drilling operations commenced. Once the hole was completed, the drill crew conducted a downhole survey using a Reflex EZ-Gyro that measured the drillhole deviation or IDS was called to site to survey the hole. Drill crews would then abandon the hole and move to the next pad. Once the drill was moved off the hole, the field personnel surveyed the final collar location and marked it with the drillhole ID and a wooden stake.

For the RC drilling, samples were collected every 5 ft using a cyclone splitter attached to the rig that homogenizes and splits each sample into the appropriate size. Chips of each interval were collected for geological logging. Each sample was collected into a uniquely identified sample bag and placed in a bin that contained all the samples from that drillhole.

The same QA/QC procedures were followed from 2021, using 4 different types of standards as well as coarse blanks and field duplicates. The results of the QA/QC work is discussed in Section 11. All samples were shipped in a bin to ALS in Reno, NV for analysis. ALS was provided with a sample list and confirmed receipt of the specified number of samples and correct sample ID's before proceeding with sample preparation.

Core holes, once complete were shipped to Elko, NV to the Calibre core logging facility where they were logged and sampled. Logging was completed by Calibre geologists and geotech, cutting, and sampling was completed by Modern Lands Development personnel. Core samples were taken at variable intervals as determined by the discretion of the geologist and placed into uniquely identified sample bags. The samples were placed into bins and shipped to ALS Reno, NV for geochemical analysis.

The 2022 drilling focused on the following target areas: Mustang, North Banshee, Palomino, Pegasus, Dynamite, Black Stallion South, Dune, Boulders, Syncline, Black Stallion, Orpiment Alley, Benji, North Dynamite, South Pit, and Limestone Canyon. Several exploration holes were drilled at new targets outside of the open pit operation that had not yet been tested, these targets are Happy Valley, Chainman Point, Coyote, and Gattica. Table 10-6 summarizes the important intercepts from the 2022 drill program using a cutoff grade of 0.20 g/t (0.006 oz/ton) Au and minimum length of 10 ft.

Table 10-6: Pan 2022 Drillhole Assay Highlights

| Hole     | Target Area | From<br>(ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|-------------|--------------|------------|-------------------|-------------|----------------|
| PC22-002 | Mustang     | 98           | 116.5      | 18.5              | 0.867       | 0.026          |
| PC22-004 | Palomino    | 738.5        | 748.5      | 10                | 1.608       | 0.048          |
| PC22-005 | Pegasus     | 203          | 234.4      | 31.4              | 0.900       | 0.027          |
| includes | Pegasus     | 208          | 218        | 10                | 1.555       | 0.047          |

| Hole     | Target Area          | From (ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|----------------------|-----------|------------|-------------------|-------------|----------------|
| includes | Pegasus              | 228       | 234.4      | 6.4               | 1.148       | 0.034          |
| PC22-006 | Dynamite             | 21.5      | 73         | 51.5              | 0.603       | 0.018          |
| includes | Dynamite             | 37        | 42         | 5                 | 1.020       | 0.031          |
| includes | Dynamite             | 62.5      | 68         | 5.5               | 2.048       | 0.061          |
| PC22-008 | Black Stallion South | 182.5     | 203        | 20.5              | 2.169       | 0.065          |
| includes | Black Stallion South | 187       | 200.5      | 13.5              | 2.931       | 0.088          |
| PC22-009 | Dune                 | 42.5      | 76         | 33.5              | 0.471       | 0.014          |
| includes | Dune                 | 66        | 71         | 5                 | 1.005       | 0.030          |
| PC22-010 | Dune                 | 53        | 90         | 37                | 0.517       | 0.016          |
| includes | Dune                 | 61.5      | 65.5       | 4                 | 1.185       | 0.036          |
| PC22-011 | Boulders             | 193.5     | 209        | 15.5              | 0.943       | 0.028          |
| includes | Boulders             | 206.5     | 209        | 2.5               | 3.600       | 0.108          |
| PC22-012 | Syncline             | 6         | 65         | 59                | 2.174       | 0.065          |
| includes | Syncline             | 28        | 56         | 28                | 4.153       | 0.125          |
| PC22-013 | Black Stallion       | 0         | 22         | 22                | 2.109       | 0.063          |
| includes | Black Stallion       | 1.5       | 22         | 20.5              | 2.218       | 0.067          |
| PR22-002 | Dune                 | 35        | 60         | 25                | 0.393       | 0.012          |
| PR22-003 | Dune                 | 0         | 15         | 15                | 0.313       | 0.009          |
| PR22-004 | Dune                 | 15        | 60         | 45                | 0.448       | 0.013          |
| includes | Dune                 | 20        | 25         | 5                 | 1.260       | 0.038          |
| PR22-005 | Dune                 | 0         | 15         | 15                | 0.586       | 0.018          |
| PR22-007 | Orpiment Alley       | 365       | 380        | 15                | 0.492       | 0.015          |
| PR22-009 | Orpiment Alley       | 165       | 175        | 10                | 0.329       | 0.010          |
| PR22-011 | Dune                 | 180       | 190        | 10                | 0.252       | 0.008          |
| PR22-012 | Dune                 | 45        | 65         | 20                | 0.269       | 0.008          |
| PR22-013 | Benji                | 150       | 170        | 20                | 0.442       | 0.013          |
| PR22-014 | Orpiment Alley       | 250       | 280        | 30                | 0.437       | 0.013          |
| PR22-015 | Benji                | 0         | 75         | 75                | 0.904       | 0.027          |
| includes | Benji                | 0         | 25         | 25                | 1.599       | 0.048          |
| PR22-016 | Benji                | 5         | 50         | 45                | 0.427       | 0.013          |
| PR22-017 | Dynamite             | 20        | 65         | 45                | 0.249       | 0.007          |
| PR22-017 | Dynamite             | 145       | 160        | 15                | 0.434       | 0.013          |
| PR22-018 | Benji                | 90        | 120        | 30                | 0.328       | 0.010          |
| PR22-020 | Benji                | 90        | 105        | 15                | 0.333       | 0.010          |
| PR22-023 | Boulders             | 175       | 190        | 15                | 0.327       | 0.010          |
| PR22-025 | Boulders             | 170       | 195        | 25                | 0.320       | 0.010          |
| PR22-026 | Dynamite             | 0         | 105        | 105               | 0.383       | 0.011          |

| Hole     | Target Area    | From (ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|----------------|-----------|------------|-------------------|-------------|----------------|
| PR22-029 | Palomino       | 200       | 210        | 10                | 0.550       | 0.017          |
| PR22-030 | Syncline       | 150       | 165        | 15                | 0.766       | 0.023          |
| PR22-031 | Palomino       | 0         | 10         | 10                | 0.212       | 0.006          |
| PR22-032 | Syncline       | 0         | 65         | 65                | 1.674       | 0.050          |
| includes | Syncline       | 10        | 50         | 40                | 2.489       | 0.075          |
| PR22-032 | Syncline       | 115       | 125        | 10                | 0.282       | 0.008          |
| PR22-034 | Dune           | 55        | 85         | 30                | 0.315       | 0.009          |
| PR22-038 | Dune           | 65        | 100        | 35                | 0.301       | 0.009          |
| PR22-039 | Dune           | 0         | 10         | 10                | 0.214       | 0.006          |
| PR22-041 | Mustang        | 65        | 85         | 20                | 1.039       | 0.031          |
| includes | Mustang        | 70        | 75         | 5                 | 1.720       | 0.052          |
| PR22-042 | Palomino       | 30        | 50         | 20                | 1.268       | 0.038          |
| includes | Palomino       | 30        | 40         | 10                | 1.710       | 0.051          |
| PR22-043 | Palomino       | 70        | 110        | 40                | 0.519       | 0.016          |
| PR22-045 | North Dynamite | 90        | 105        | 15                | 1.026       | 0.031          |
| includes | North Dynamite | 95        | 100        | 5                 | 1.605       | 0.048          |
| PR22-048 | South Pit      | 625       | 635        | 10                | 0.349       | 0.010          |
| PR22-049 | Palomino       | 0         | 25         | 25                | 0.293       | 0.009          |
| PR22-055 | Palomino       | 205       | 230        | 25                | 1.247       | 0.037          |
| includes | Palomino       | 205       | 220        | 15                | 1.612       | 0.048          |
| PR22-056 | Dynamite       | 290       | 310        | 20                | 0.834       | 0.025          |
| includes | Dynamite       | 295       | 305        | 10                | 1.170       | 0.035          |
| PR22-057 | Palomino       | 55        | 65         | 10                | 0.484       | 0.015          |
| PR22-061 | Dynamite       | 280       | 345        | 65                | 0.585       | 0.018          |
| includes | Dynamite       | 290       | 300        | 10                | 1.180       | 0.035          |
| PR22-062 | Dynamite       | 445       | 455        | 10                | 0.242       | 0.007          |
| PR22-063 | Dynamite       | 85        | 100        | 15                | 0.320       | 0.010          |
| PR22-064 | Palomino       | 90        | 100        | 10                | 0.405       | 0.012          |
| PR22-066 | Dune           | 70        | 80         | 10                | 0.332       | 0.010          |
| PR22-070 | Pegasus        | 270       | 310        | 40                | 0.373       | 0.011          |
| PR22-073 | Dynamite       | 185       | 285        | 100               | 0.466       | 0.014          |
| includes | Dynamite       | 225       | 230        | 5                 | 1.100       | 0.033          |
| PR22-075 | Pegasus        | 290       | 305        | 15                | 0.478       | 0.014          |
| PR22-077 | Dynamite       | 480       | 500        | 20                | 0.708       | 0.021          |
| includes | Dynamite       | 480       | 485        | 5                 | 1.135       | 0.034          |
| PR22-078 | Dynamite       | 455       | 490        | 35                | 0.834       | 0.025          |
| includes | Dynamite       | 460       | 465        | 5                 | 1.025       | 0.031          |

| Hole     | Target Area      | From (ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|------------------|-----------|------------|-------------------|-------------|----------------|
| includes | Dynamite         | 480       | 485        | 5                 | 1.905       | 0.057          |
| PR22-079 | Pegasus          | 420       | 430        | 10                | 0.290       | 0.009          |
| PR22-080 | Pegasus          | 510       | 535        | 25                | 0.695       | 0.021          |
| PR22-082 | Pegasus          | 850       | 895        | 45                | 0.639       | 0.019          |
| includes | Pegasus          | 860       | 865        | 5                 | 1.505       | 0.045          |
| includes | Pegasus          | 875       | 880        | 5                 | 1.320       | 0.040          |
| PR22-083 | Black Stallion   | 35        | 70         | 35                | 0.510       | 0.015          |
| includes | Black Stallion   | 40        | 45         | 5                 | 1.005       | 0.030          |
| PR22-085 | Pegasus          | 630       | 770        | 140               | 1.471       | 0.044          |
| includes | Pegasus          | 640       | 710        | 70                | 2.327       | 0.070          |
| includes | Pegasus          | 730       | 735        | 5                 | 1.500       | 0.045          |
| PR22-087 | Black Stallion   | 0         | 45         | 45                | 4.289       | 0.129          |
| includes | Black Stallion   | 0         | 40         | 40                | 4.796       | 0.144          |
| PR22-088 | Pegasus          | 545       | 685        | 140               | 0.857       | 0.026          |
| includes | Pegasus          | 555       | 565        | 10                | 2.453       | 0.074          |
| includes | Pegasus          | 670       | 675        | 5                 | 2.800       | 0.084          |
| PR22-089 | Black Stallion   | 100       | 115        | 15                | 0.280       | 0.008          |
| PR22-090 | Black Stallion   | 5         | 20         | 15                | 0.241       | 0.007          |
| PR22-092 | Limestone Canyon | 265       | 275        | 10                | 0.524       | 0.016          |
| PR22-093 | Pegasus          | 575       | 675        | 100               | 0.650       | 0.020          |
| includes | Pegasus          | 610       | 615        | 5                 | 1.690       | 0.051          |
| PR22-094 | Pegasus          | 600       | 645        | 45                | 0.723       | 0.022          |
| includes | Pegasus          | 610       | 620        | 10                | 1.325       | 0.040          |
| PR22-094 | Pegasus          | 680       | 690        | 10                | 0.237       | 0.007          |
| PR22-098 | Pegasus          | 10        | 20         | 10                | 0.240       | 0.007          |
| PR22-098 | Pegasus          | 35        | 50         | 15                | 0.495       | 0.015          |
| PR22-098 | Pegasus          | 140       | 150        | 10                | 0.276       | 0.008          |
| PR22-100 | Black Stallion   | 235       | 270        | 35                | 0.823       | 0.025          |
| includes | Black Stallion   | 240       | 250        | 10                | 1.500       | 0.045          |
| PR22-110 | Mustang          | 25        | 40         | 15                | 1.000       | 0.030          |
| includes | Mustang          | 30        | 40         | 10                | 1.370       | 0.041          |
| PR22-111 | Boulders         | 240       | 255        | 15                | 1.392       | 0.042          |
| includes | Boulders         | 245       | 255        | 10                | 1.928       | 0.058          |
| PR22-114 | Boulders         | 320       | 330        | 10                | 0.359       | 0.011          |
| PR22-116 | Limestone Canyon | 215       | 255        | 40                | 0.933       | 0.028          |
| includes | Limestone Canyon | 225       | 235        | 10                | 2.425       | 0.073          |
| PR22-119 | Dune             | 75        | 90         | 15                | 0.676       | 0.020          |

| Hole     | Target Area          | From (ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|----------------------|-----------|------------|-------------------|-------------|----------------|
| includes | Dune                 | 80        | 85         | 5                 | 1.215       | 0.036          |
| PR22-121 | Dune                 | 110       | 120        | 10                | 0.316       | 0.009          |
| PR22-122 | Dune                 | 85        | 100        | 15                | 0.353       | 0.011          |
| PR22-126 | Dune                 | 20        | 30         | 10                | 0.336       | 0.010          |
| PR22-135 | Dune                 | 75        | 90         | 15                | 0.334       | 0.010          |
| PR22-138 | Dune                 | 385       | 395        | 10                | 0.337       | 0.010          |
| PR22-141 | Dune                 | 35        | 65         | 30                | 0.378       | 0.011          |
| PR22-146 | Dune                 | 80        | 90         | 10                | 0.239       | 0.007          |
| PR22-148 | Dune                 | 130       | 155        | 25                | 0.315       | 0.009          |
| PR22-149 | Dune                 | 285       | 310        | 25                | 0.470       | 0.014          |
| PR22-150 | Dune                 | 260       | 270        | 10                | 0.360       | 0.011          |
| PR22-151 | Dune                 | 35        | 50         | 15                | 0.315       | 0.009          |
| PR22-152 | Dune                 | 25        | 50         | 25                | 0.549       | 0.016          |
| PR22-154 | Dune                 | 80        | 95         | 15                | 0.335       | 0.010          |
| PR22-157 | Black Stallion       | 210       | 220        | 10                | 0.693       | 0.021          |
| includes | Black Stallion       | 215       | 220        | 5                 | 1.050       | 0.032          |
| PR22-159 | Black Stallion South | 150       | 165        | 15                | 0.309       | 0.009          |
| PR22-160 | Black Stallion South | 45        | 65         | 20                | 0.459       | 0.014          |
| PR22-167 | Black Stallion South | 145       | 195        | 50                | 0.344       | 0.010          |
| PR22-168 | Black Stallion South | 90        | 100        | 10                | 0.432       | 0.013          |
| PR22-171 | Dune                 | 70        | 85         | 15                | 1.086       | 0.033          |
| includes | Dune                 | 75        | 80         | 5                 | 1.540       | 0.046          |
| PR22-176 | Dune                 | 45        | 55         | 10                | 0.264       | 0.008          |
| PR22-177 | Dune                 | 0         | 15         | 15                | 0.295       | 0.009          |
| PR22-178 | Dune                 | 140       | 150        | 10                | 0.221       | 0.007          |
| PR22-179 | Dune                 | 95        | 115        | 20                | 0.470       | 0.014          |
| PR22-181 | Dune                 | 210       | 220        | 10                | 0.559       | 0.017          |
| PR22-182 | Orpiment Alley       | 330       | 370        | 40                | 0.606       | 0.018          |
| includes | Orpiment Alley       | 355       | 360        | 5                 | 1.015       | 0.030          |
| PR22-185 | Dune                 | 370       | 395        | 25                | 0.514       | 0.015          |
| includes | Dune                 | 385       | 390        | 5                 | 1.235       | 0.037          |
| PR22-187 | Dune                 | 50        | 60         | 10                | 0.242       | 0.007          |
| PR22-188 | North Dynamite       | 945       | 985        | 40                | 0.255       | 0.008          |
| PR22-190 | North Dynamite       | 90        | 155        | 65                | 0.745       | 0.022          |
| includes | North Dynamite       | 115       | 135        | 20                | 1.315       | 0.039          |
| PR22-192 | Dune                 | 150       | 160        | 10                | 0.284       | 0.009          |
| PR22-197 | Black Stallion       | 280       | 295        | 15                | 0.245       | 0.007          |

| Hole     | Target Area          | From (ft) | To<br>(ft) | Interval<br>(ft)* | Au<br>(g/t) | Au<br>(oz/ton) |
|----------|----------------------|-----------|------------|-------------------|-------------|----------------|
| PR22-202 | Dune                 | 125       | 150        | 25                | 0.261       | 0.008          |
| PR22-203 | Benji                | 130       | 145        | 15                | 0.525       | 0.016          |
| PR22-204 | North Dynamite       | 25        | 35         | 10                | 0.384       | 0.012          |
| PR22-206 | North Dynamite       | 205       | 215        | 10                | 0.382       | 0.011          |
| PR22-207 | North Dynamite       | 65        | 75         | 10                | 0.415       | 0.012          |
| PR22-208 | North Dynamite       | 855       | 865        | 10                | 0.224       | 0.007          |
| PR22-209 | North Dynamite       | 290       | 360        | 70                | 0.559       | 0.017          |
| includes | North Dynamite       | 325       | 330        | 5                 | 1.440       | 0.043          |
| PR22-210 | North Dynamite       | 195       | 245        | 50                | 0.510       | 0.015          |
| PR22-211 | North Dynamite       | 70        | 220        | 150               | 0.674       | 0.020          |
| includes | North Dynamite       | 195       | 210        | 15                | 1.367       | 0.041          |
| PR22-212 | North Dynamite       | 445       | 465        | 20                | 0.404       | 0.012          |
| PR22-214 | South Black Stallion | 155       | 185        | 30                | 1.377       | 0.041          |
| includes | South Black Stallion | 165       | 180        | 15                | 2.048       | 0.061          |
| PR22-218 | Syncline             | 105       | 155        | 50                | 1.049       | 0.031          |
| includes | Syncline             | 110       | 120        | 10                | 2.115       | 0.063          |
| PR22-219 | Syncline             | 135       | 160        | 25                | 0.674       | 0.020          |
| includes | Syncline             | 150       | 155        | 5                 | 1.955       | 0.059          |
| PR22-221 | Benji                | 45        | 65         | 20                | 0.532       | 0.016          |
| PR22-224 | North Dynamite       | 505       | 545        | 40                | 1.670       | 0.050          |
| includes | North Dynamite       | 510       | 540        | 30                | 2.123       | 0.064          |
| PR22-228 | North Dynamite       | 690       | 710        | 20                | 0.468       | 0.014          |
| PR22-229 | Black Stallion South | 140       | 150        | 10                | 0.291       | 0.009          |

\*All drillholes were angle to vertical holes, with azimuths and inclinations designed to intersect targeted structures as nearly as possible to perpendicular. Consequently, all intercepts reported here are believed to be approximately 'true width', however there may be some exceptions to this on a hole by hole basis particularly holes targeting near vertical structures.

Coyote was initially identified through historical surface geochemistry and rock chip sampling with an evolving structural geological interpretation. Four RC drillholes were completes at Coyote, which is located approximately 3 km south-southwest of the Pan South Pit and is considered open for expansion. At Coyote, PR22-238 intersected 1.36 g/t (0.040 oz/ton) Au over 45 ft including 2.78 g/t (0.081 oz/ton) Au over 15 ft. and 0.61 g/t (0.018 oz/ton) Au over 60 ft in PR22-237.

Holes drilled in North Dynamite extend mineralization down dip and along strike, expanding mineralization north from the Dynamite Pit. Notable intercepts include:

- 0.47 g/t (0.014 oz/ton) Au over 60 ft in Hole PR22-210;
- 1.67 g/t (0.049 oz/ton) Au over 40 ft including 2.12 g/t (0.062 oz/ton) Au over 30 ft in Hole PR22-224;
   and

0.67 g/t (0.020 oz/ton) Au over 75 ft including 1.14 g/t (0.033 oz/ton) Au over 30 ft in Hole PR22-190;

Five RC holes and 1 core hole drilled in Pegasus, along the eastern margin of the South Pit intersected mineralization at depth. Most notable is PR22-085 with 1.47 g/t (0.043 oz/ton) Au over 140 ft including 70 ft at 2.33 g/t (0.068 oz/ton) Au.

# 11 Sample Preparation, Analysis and Security

Historical drilling at the Pan deposit dates back to 1978. More than 1,700 exploration or resource definition drill holes have been completed at Pan; The current Mineral Resource drill hole database includes 1,179 pre 2018 drill holes totaling 377,744 ft, plus 2,324 ft in six water wells logged for geology but not sampled for assay (Table 6-1). Of the assayed pre 2018 drill holes in the database, 1,146 holes with 364,839 ft were drilled by RC or rotary methods, and the rest were diamond core holes, totaling 12,905 ft in 33 drill holes.

There is little information on drilling and sample procedures, sample preparation, analytical methods and Quality Assurance/Quality Control (QA/QC) for the pre-2000 drill hole data. There is no information on drill site sampling protocols and transportation of samples to the various laboratories for the pre-2000 drill holes. Although assay certificates exist for most of the pre-2000 drill holes in hard copy, there is little information on laboratory sample preparation methods and attributes such as assay charge or aliquot size. The assays records do provide basic information on the assay type i.e., fire assay for total gold or cyanide soluble gold using wet chemical techniques.

Early drill programs by Amselco and Hecla utilized Monitor Geochemical Laboratory (Elko, Nevada), Hunter Mining Laboratory (Sparks, Nevada), Amselco's own laboratory (Sparks, Nevada) and Rocky Mountain Geochemical (Sparks Nevada). Drill programs conducted by Echo Bay, Alta Bay and Alta Gold (pre-2000) utilized a number of mine site laboratories including Alta Gold controlled mine site laboratories at the Robinson, Illipah, and Easy Junior mining operations. In general, the mine site laboratories performed cold cyanide digestion followed by AA determination of gold content on 10 or 15 gram sample charges. Follow up fire assay gold analyses were generally performed on samples yielding greater than 0.01 to 0.012 opt Au. Latitude and Degerstrom transported samples to the Degerstrom laboratory in Spokane, Washington, where most of the samples were analyzed by 30-gram fire assay with AA finish.

Castleworth Ventures RC samples were transported to and processed at Chemex (the precursor to ALS Chemex) in Elko, Nevada. Standard sample preparation was employed at Chemex with the sample pulps transferred to Vancouver, B.C. where gold assays were performed by fire assay on one assay ton aliquots followed by AA finish. No cyanide gold analyses were performed by Castleworth Ventures. Core samples were collected and prepared for analysis by KCA. Core samples were sawn in half and collected as 5 ft samples. Fire assay gold utilizing a 30 gram aliquot and AA finish was performed on all the core samples. In addition, cold cyanide soluble gold analyses were performed on the core samples.

Midway 2007 to 2015 RC and core samples were either transported daily to secure facilities in Eureka or Ely, Nevada, or were stored on site in locked containers until they were picked up or transported to the appropriate laboratory in Elko, Winnemucca, or Reno, Nevada. During Midway's program history from 2007 to 2015, RC samples were transported and processed at ALS Chemex Elko, Winnemucca, and Reno, Nevada, American Assay Laboratory of Reno, Nevada and SGS Laboratory of Elko, Nevada. RC samples were analyzed by standard 30-gram fire assay with AA finish, Core samples collected in 2010 to 2012 were logged, photographed, and cut at Midway's Ely facility and then transported to ALS Chemex Elko, Nevada for sample preparation. Sample pulps were analyzed by standard fire assay for gold with AA finish and cold cyanide soluble gold with AA finish at either Reno, Nevada or Vancouver, B.C.

There is no information or data available on any QA/QC protocols including the analysis of certified reference materials (CRMs), duplicates, or blanks in the historical drill hole database prior to the Midway drilling campaigns in 2007. There is some information available in the database on QA/QC sampling conducted by Midway as part of the historical 2007 to 2015 drilling campaigns. QA/QC samples were inserted by Midway at a rate of about 1 in 20 (5%) versus original samples. Midway also completed a number of twin core holes of RC drill holes. The historical QA/QC data and twin hole data was reviewed by APEX personnel and Mr. Dufresne, the author of this section. No significant issues were identified, therefore the 2007 to 2015 Midway drilling data is deemed to be suitable for resource estimation.

SRK (Pennington *et al.* (SRK 2017) and Deiss *et al.* (SRK 2019)) performed a comprehensive database validation on behalf of Calibre, including a review of all documents and information available for the historical pre-2018 drilling. APEX personnel and Mr. Dufresne have reviewed the SRK validation efforts and have also reviewed the historical Pan drillhole data and the 2018 to 2022 drillhole data and found no significant issues. Based upon this review Mr. Dufresne, the author of this section has accepted the data and considers the data, including the historical pre-2018 data, well validated and suitable for the preparation of the MRE and Mineral Reserves as presented herein.

The following sections summarize the sample collection, preparation, analytical, and QA/QC methodology employed by Calibre in the 2018 and 2022 drilling programs.

#### 11.1 Sample Collection, Preparation and Security

The RC sample procedures remained the same throughout the 2018 to 2022 drill programs. Prior to commencing each hole, Calibre geologists provided the drill crews with uniquely numbered sample bags for each 5-foot interval, with printed sheets. A subset of bags were removed from the sample sequence and used to insert quality assurance/quality control (QA/QC) samples into the sample sequence after each drill hole was complete. The drillers were also provided sample sheets indicating which 5-foot interval corresponded to each uniquely numbered bag to ensure each interval was properly sampled and tracked. The RC drill rigs used a cyclone splitter that homogenized all the rock chips from a given interval and split out a designated, consistent sample size. The sample size was approximately 5 to 10 kg. Each sample bag was placed in a bin that contained all the samples for that drill hole. Calibre geologists inserted QA/QC samples at specific intervals in the sample sequence for each drill hole. The type of QA/QC sample was predetermined by a set alternating pattern of samples. All samples were stored in a bin and shipped to ALS in Reno, NV. ALS was provided with a sample list and confirmed receipt of the specified number of samples and correct sample IDs.

# 11.2 Analytical Procedures

All 2018 – 2022 drill chip samples were prepared at various ALS prep labs and analyzed at ALS in Reno, NV, an accredited laboratory that conforms to requirements of CAN-P-1579 and CAN-P-4E (ISO/IEC 17025:2005). ALS is independent of the authors and the issuer. Samples were crushed to 70% <2 mm then riffle split and pulverized to better than 85% passing 75 microns (μm). Samples were then analyzed for gold, using ALS analytical method Au-AA23, Au-AA31, and Au-AA31a. Method Au-AA23 involves analyzing for gold using fire assays on a 30 g aliquot with an atomic absorption (AA) finish. Method Au-

AA31 is a Gold Preg-Robbing Cyanide Leach utilizing a 10 g aliquot with a Gold Spike. A known quantity of gold is introduced into the sample before analysis. This allows for the amount of Preg-Robbing to be quantified if it is an issue. Method Au-AA31a is a Gold -Preg-Robbing Cyanide Leach analysis utilizing a 10 g aliquot and was conducted without a spike. Preg-Robbing occurs when natural carbonaceous material absorbs gold from cyanide solution (Miller et al, 2016). If natural carbonaceous material is present in a sample, the Au-AA31a assay value will be lower than the Au-AA23 value. Understanding if carbonaceous material is present at Pan is important because the processing and recovery method at Pan is cyanide heap leach.

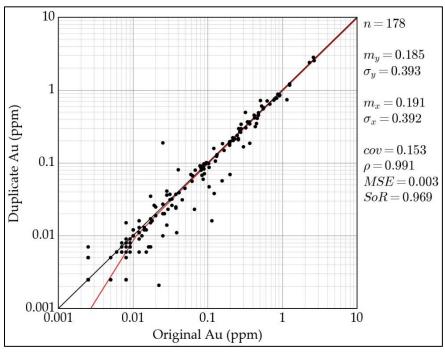
Additional analyses completed on select holes included a near total four acid digestion followed by an inductively coupled plasma mass spectrometry (ICP-MS) finish for multi-element analysis (lab code ME-MS61), and ore grade Zn analysis (Zn-OG62) at the ALS Laboratory in Vancouver, BC, Canada.

### 11.3 Quality Assurance – Quality Control

Calibre's sampling and fire assay QA/QC procedures for the 2018 to 2022 Pan drilling program consisted of the insertion of field duplicates, coarse blank samples, and pulps of known value (certified reference material (CRM) or standards) inserted into the sample stream.

The field duplicate samples comprised the collection of a second sample of RC chips representing the same interval, with both the "parent" and the "duplicate" samples submitted for separate assays. The field duplicates are used to assess the quality of homogenization achieved by the cyclone splitter. Significant differences between original and duplicate sample assay results could indicate sample bias during the splitting process or could be due to inhomogeneity inherent to the rock samples.

Coarse blank samples consisted of a commercial variety of decorative marble chips that contains no appreciable quantity of gold. Coarse blank samples provide a means by which the sample preparation procedures at laboratories can be tested for potential issues related to sample-to-sample contamination, usually due to poor procedures related to incomplete clearing/cleaning of crushing and pulverizing machines between samples.


CRM's were inserted into the analytical sample stream in order to provide a means by which overall analytical precision and accuracy can be measured. Standard samples were commercially purchased and comprise pulverized and homogenized materials that have been suitably tested, normally by means of a multi-lab round robin analysis, in order to establish an accepted (certified) value for the standard and statistics to define and support the "acceptable range" (i.e., variance), by which subsequent analyses of the material may be judged. Generally, this involves the examination of assay results relative to inter-lab Standard Deviation (SD), resulting from each standard's round-robin testing data, whereby individual assay results may be examined relative to 2SD and 3SD ranges.

The following is a discussion of the QA/QC samples that were independently inserted into the sample sequence by Calibre.

#### 11.3.1 2018 Drilling QA/QC

In 2018 a total of 5,726 RC samples were sent to ALS for gold analysis, along with 598 QA/QC samples. The QA/QC samples included 178 duplicate samples, 197 blank samples and 223 standards.

Duplicates were inserted into the sample stream randomly at regular intervals for the 2018 RC drill program. A total of 178 duplicates were analyzed via fire assay (Au-AA23) and cyanide leach (Au-AA31, Au-AA31a). The results of the fire assay analyses are illustrated in Figure 11-1 below. The data show excellent correlation ( $\rho$  = 0.991) with no issues to report.



Source: APEX, 2020

Figure 11-1: 2018 Duplicate Au Fire Assay Results

Coarse blanks were inserted into the sample stream randomly at regular intervals for all 2018 RC holes. A total of 197 coarse blanks were analyzed via fire assay (Au-AA23) and Preg-Robbing cyanide leach (Au-AA31, Au-AA31a). The results of the coarse blank fire assay analyses are illustrated in Figure 11-2 below.

The blanks largely (98%) returned assay results within an allowable threshold (within 3x the lower detection limit), with the majority (73%) returning values below the Au-AA23 detection limit of 0.005 ppm Au. One blank sample (FG103932) returned 1.01 ppm Au; this sample was likely switched with the following RC sample FG103933 which assayed 0.008 ppm Au and has been re-assigned in the database. The results are considered acceptable.

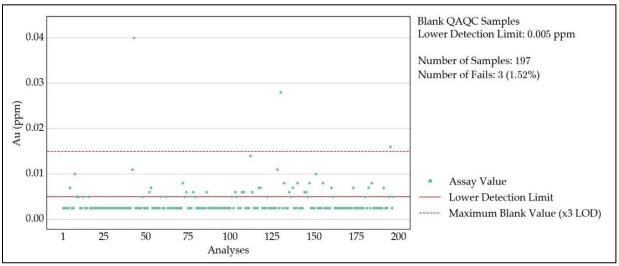



Figure 11-2: 2018 Coarse Blank Au Fire Assay Results

Standards were inserted into the sample stream randomly but at specified intervals for the 2018 RC drill holes. A total of 223 standards were analyzed using fire assay (Au-AA23) and Preg-Robbing cyanide leach (Au-AA31, Au-AA31a). Standards used during 2018 include five different certified reference materials from ROCKLABS: OxC129 (Au = 0.205 ppm, n = 66), OxE143 (Au = 0.621 ppm, n = 8), OxE126 (Au = 0.623 ppm, n = 59), OxB130 (Au = 0.125 ppm, n = 12), and OxI121 (Au = 1.834 ppm, n = 7), as well as one standard from OREAS: Oreas 6Pc (Au = 1.52 ppm, n = 70).

The results of the fire assay analyses for all standards are illustrated in Figure 11-3 through Figure 11-8. The majority of the standards returned assay results within acceptable limits. Three standard samples were mis-labeled and have been re-assigned to the correct standard and are included in the plots below.

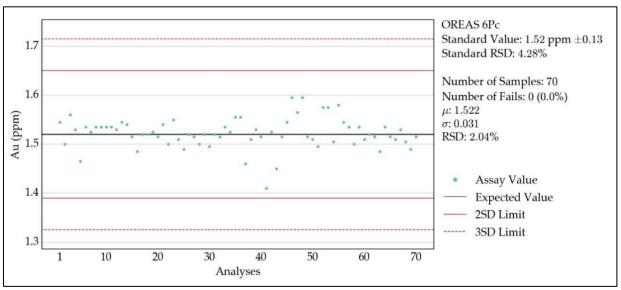
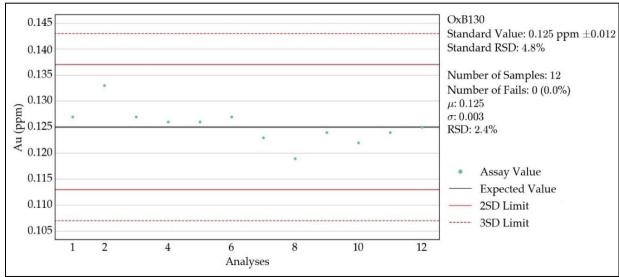




Figure 11-3: 2018 Standard Reference Material (Oreas 6Pc) Fire Assay Results



Source: APEX, 2020

Figure 11-4: 2018 Standard Reference Material (OxB130) Fire Assay Results

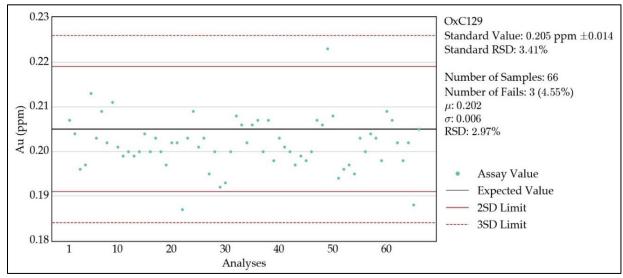
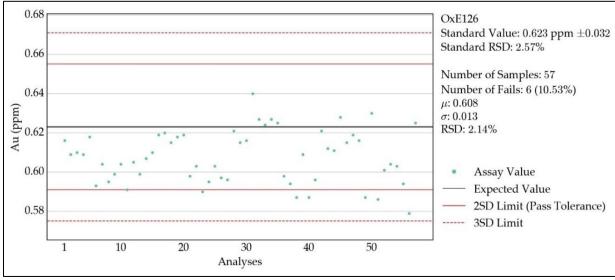




Figure 11-5: 2018 Standard Reference Material (OxC129) Fire Assay Results



Source: APEX, 2020

Figure 11-6: 2018 Standard Reference Material (OxE126) Fire Assay Results

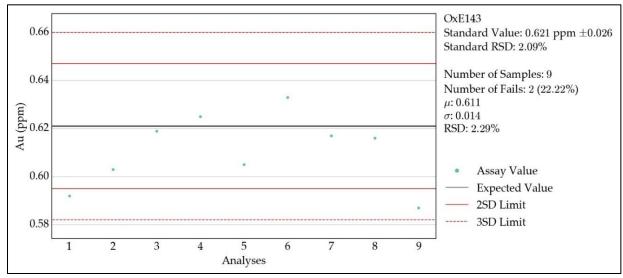
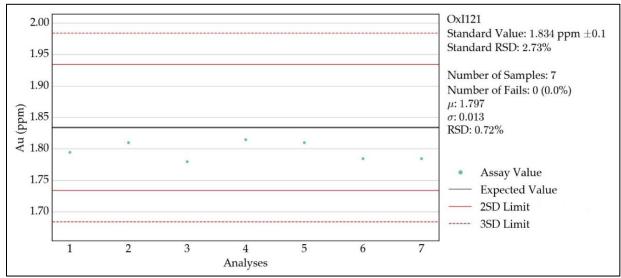




Figure 11-7: 2018 Standard Reference Material (OxE143) Fire Assay Results



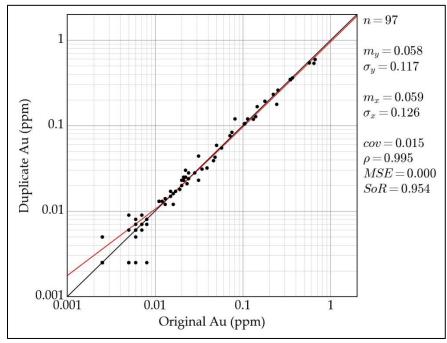

Source: APEX, 2020

Figure 11-8: 2018 Standard Reference Material (OxI121) Fire Assay Results

#### 11.3.2 2019 Drilling QA/QC

In 2019, a total of 4,290 RC samples were sent to ALS for gold analysis, along with 579 randomly inserted (but at specified intervals) QA/QC samples. The QA/QC samples included 97 duplicate samples, 243 blank samples and 239 standards. One standard or blank was inserted approximately every 10 samples and one duplicate was inserted approximately every 50 samples.

Duplicates were inserted into the sample stream randomly for the 2019 RC drill program. A total of 97 duplicates were analyzed via fire assay (Au-AA23) and cyanide leach (Au-AA31, Au-AA31a). The results of the fire assay analyses are illustrated in Figure 11-9. The data show excellent correlation ( $\rho$  = 0.995) with no issues to report.



Source: APEX, 2020

Figure 11-9: 2019 Duplicate Au Fire Assay Results

Coarse blanks were inserted into the 2019 sample stream at regular intervals (approximately every 20 samples). A total of 243 coarse blanks were analyzed via fire assay (Au-AA23) and Preg-Robbing cyanide leach (Au-AA31, Au-AA31a). The results of the fire assay analyses are illustrated in Figure 11-10. All blanks, with the exception of one sample, fell within an allowable threshold (3x the lower detection limit), with the majority returning values below the Au-AA23 detection limit of 0.005 ppm Au. The blank that failed and samples around it were not re-assayed because it did not fall within a mineralized zone.

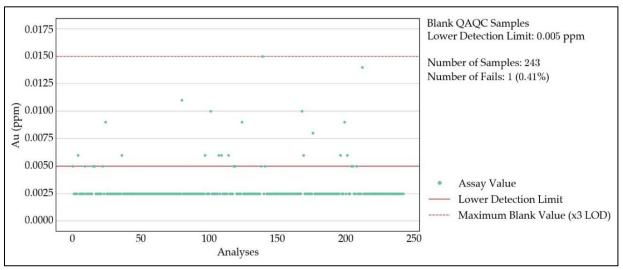



Figure 11-10: 2019 Coarse Blank Au Fire Assay Results

Standards were inserted into the 2019 sample stream at regular intervals (approximately every 20 samples). A total of 239 standards were analyzed via fire assay (Au-AA23) and Preg-Robbing cyanide leach (Au-AA31, Au-AA31a). Standards used during 2019 included three different certified reference materials from ROCKLABS: OxC152 (Au = 0.216 ppm, n = 81), OxE150 (Au = 0.658 ppm, n = 78), and OxJ137 (Au = 2.416 ppm, n = 80). The results of the fire assay analyses are illustrated in Figure 11-11 through Figure 11-13. No significant issues were identified, and the results are considered acceptable.

The majority of assay results for the standards during the 2019 drill program fell within three standard deviations from the certified value based on the standard deviation reported by the manufacturer. Failures outside of this range were only submitted for re-assay if the standard was within an anomalous mineralized zone (>0.2 ppm). A re-run would include 10 samples above the failed standard, the standard, and 10 samples below the failed standard. None of the standards that failed in 2019 fell within anomalous mineralized zones and hence none were sent for re-assay.

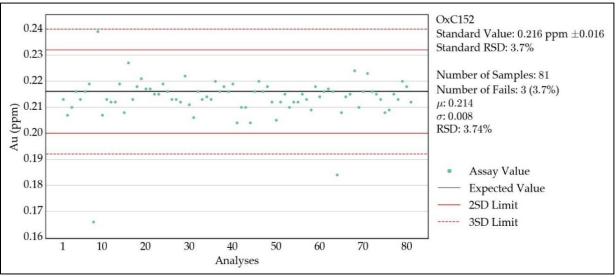
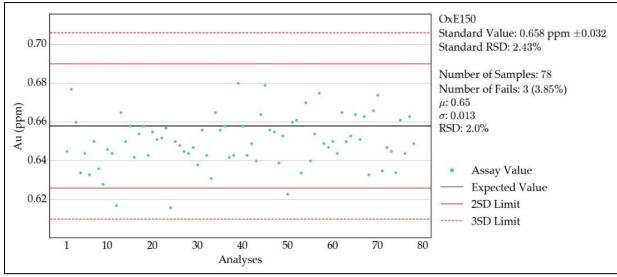




Figure 11-11: 2019 Standard Reference Material (OxC152) Fire Assay Results



Source: APEX, 2020

Figure 11-12: 2019 Standard Reference Material (OxE150) Fire Assay Results

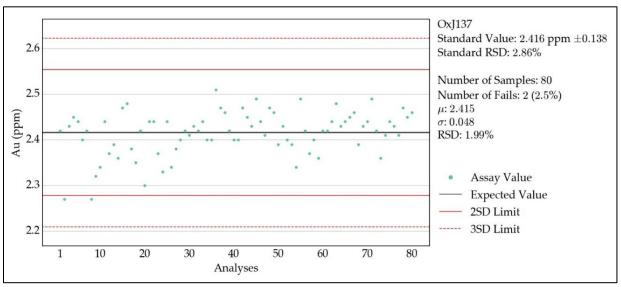



Figure 11-13: 2019 Standard Reference Material (OxJ137) Fire Assay Results

#### 11.3.3 2020 Drilling QA/QC

During the February to June 2020 RC drill program a total of 8,626 RC samples were sent to ALS for gold analysis, along with 1,557 randomly inserted (but at specified intervals) QA/QC samples. The QA/QC samples included 258 duplicate samples, 650 blank samples and 649 standards. The same procedures from 2019 for inserting QA/QC samples and duplicates was followed for the 2020 program.

Duplicates were inserted into the sample stream randomly for the 2020 RC drill program. A total of 258 duplicates were analyzed via fire assay (Au-AA23) and cyanide leach (Au-AA31, Au-AA31a). The results of the fire assay analyses are illustrated in Figure 11-14. Overall, the data show an excellent correlation ( $\rho$  = 0.993) with no major issues to report.

Failures in duplicate assays were assessed according to the following criteria: duplicate assays exceeding a 15% difference in ppm Au for samples assaying above 0.205 ppm Au were considered a failure. If a duplicate failure occurs within a mineralized zone the duplicate sample along with the 10 previous and 10 subsequent samples in the sample sequence are submitted for re-assay. In 2020, two duplicate samples failed and were submitted for re-assay. The discrepancy in the assay results between the original and duplicate samples was replicated by the re-assay and is attributed to heterogeneity inherent to the samples. The overall duplicate results are considered acceptable.

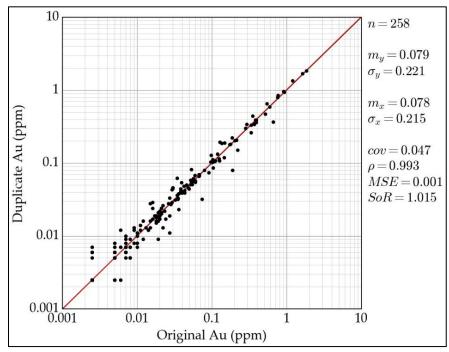



Figure 11-14: 2020 Duplicate Au Fire Assay Results

Coarse blanks were inserted into the sample stream at regular intervals (approximately every 20 samples). A total of 650 coarse blanks were analyzed via fire assay (Au-AA23) and Preg-Robbing cyanide leach (Au-AA31, Au-AA31a). The results of the fire assay analyses are illustrated in Figure 11-15 below. The majority (99.2%) of the blanks fell within an allowable threshold, with the majority (91%) returning values below the Au-AA23 detection limit of 0.005 ppm Au. Four blanks fell outside of the 3x the lower detection limit. One of these blanks was within a mineralized zone and was submitted for re-assay along with the previous and following 9 samples in the sample sequence. The re-assay of this blank returned the same Au value in both Cyanide Leach (CN) and Fire Assay (FA) assays indicating that it contained a very small quantity of gold that may or may not have been the result of contamination. No significant issues were identified, and the results are considered acceptable.

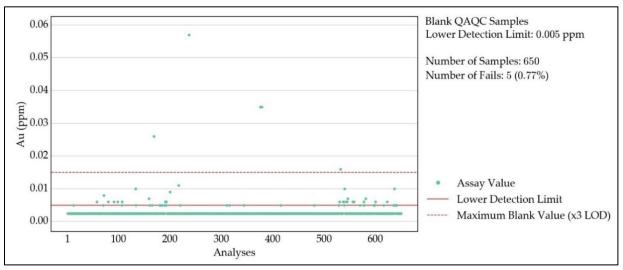



Figure 11-15: 2020 Coarse Blank Au Fire Assay Results

Standards were inserted into the sample stream at regular intervals (approximately every 20 samples). A total of 649 standards were analyzed via fire assay (Au-AA23) and Preg-Robbing cyanide leach (Au-AA31, Au-AA31a). Standards used during 2020 included two different certified reference materials from ROCKLABS: OxC152 (Au = 0.216 ppm, n = 324), and OxE150 (Au = 0.658 ppm, n = 325). The results of the fire assay analyses are illustrated in Figure 11-16 and Figure 11-17.

The majority of assay results for the standards during the 2020 drill program fell within 3 standard deviations from the certified value based on the standard deviation reported by the manufacturer. Failures outside of this range were only submitted for re-assay if the standard was within an anomalous mineralized zone (>0.2 ppm). A re-run would include 10 samples above the failed standard, the standard, and 10 samples below the failed standard. None of the failures for the standards in 2020 fell within anomalous mineralized zones and hence none were sent for re-assay. No significant issues were identified, and the results are considered acceptable.

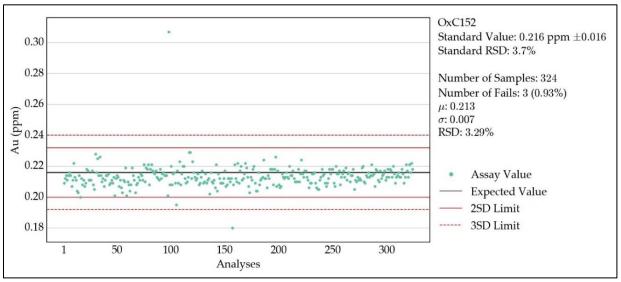
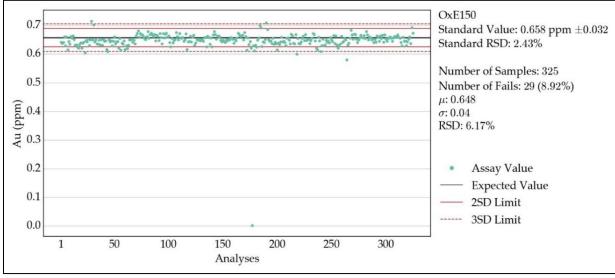




Figure 11-16: 2020 Standard Reference Material (OxC152) Fire Assay Results



Source: APEX, 2020

Figure 11-17: 2020 Standard Reference Material (OxE150) Fire Assay Results

During the October to December 2020 core drill program, a total of 876 core samples were sent to ALS for gold analysis, along with 45 randomly inserted (but at specified intervals) QA/QC samples. The QA/QC samples consisted of 9 blank samples and 36 standards. No duplicate samples were inserted. Insertion and QA/QC procedures are exactly as outlined in this section for the February to June RC 2020 drilling program. Upon receiving the assay results, samples that did not undergo assay for reasons such as insufficient sample material, were removed from QA/QC analysis and do not appear in the following plots,

Figure 11-18 to Figure 11-21. No significant issues were identified, and the results are considered acceptable for all QA/QC for the October to December core 2020 drilling program.

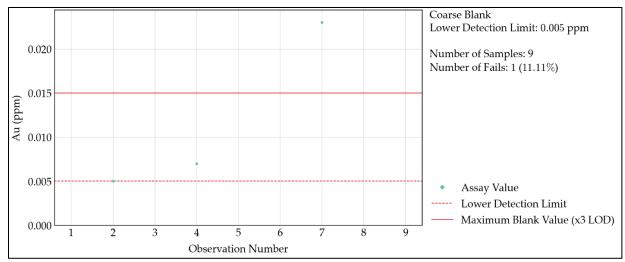
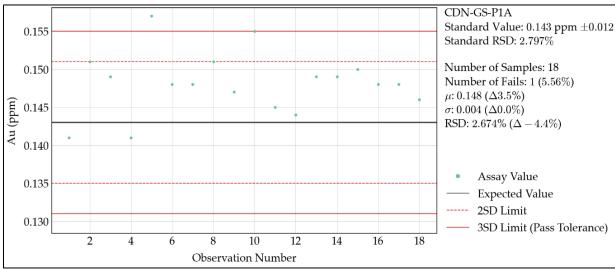




Figure 11-18: Control chart of coarse blank samples assayed for the 2020 core drilling program



Source: APEX, 2023

Figure 11-19: Control chart of CDN-GS-P1A CRM samples assayed for the 2020 core drilling program

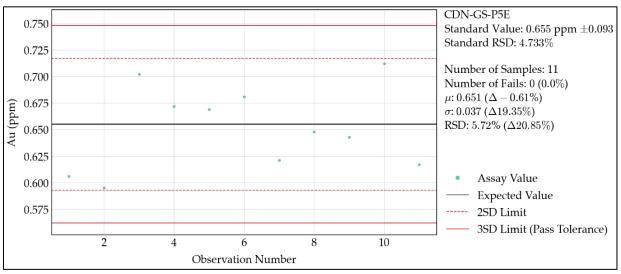
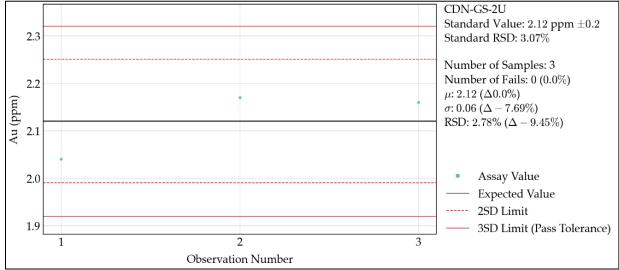



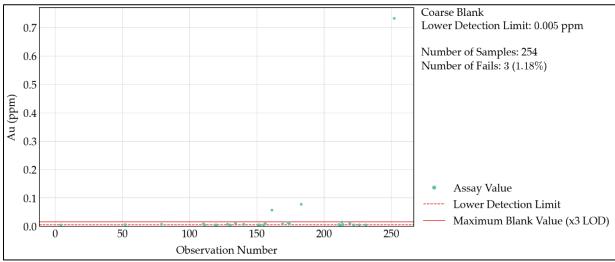

Figure 11-20: Control chart of CDN-GS-P5E CRM samples assayed for the 2020 core drilling program



Source: APEX, 2023

Figure 11-21: Control chart of CDN-GS-2U CRM samples assayed for the 2020 core drilling program

#### 11.3.4 2021 Drilling QA/QC


The 2021 drill program consisted of a total of 5,047 RC samples and 282 core samples sent to ALS for gold analysis, along with 704 QA/QC samples inserted at predetermined intervals. The QA/QC samples included 112 duplicate samples, 293 blank samples, and 299 standards. The procedures for inserting QA/QC samples and duplicates for the 2021 program are provided below in the following sections. Upon

receiving the assay results, samples that did not undergo assay for reasons such as insufficient sample material, were removed from QA/QC analysis and do not appear in the following plots.

Field duplicates were inserted into the sample stream every 50 samples for the 2021 RC drill program. Duplicates were not inserted in the core program. A total of 112 duplicates were sent for analysis via fire assay (Au-AA23) and cyanide leach (Au-AA31, Au-AA31a).

Failures in field duplicate assays were assessed with a scatter plot. The duplicate samples from 2021 were evaluated in combination with the 2022 field duplicate samples and are discussed in Section 11.3.5.

Coarse blanks were inserted into the sample stream at regular intervals (every 20 samples). A total of 254 coarse blanks were analyzed via fire assay (Au-AA23) and Preg-Robbing cyanide leach (Au-AA31, Au-AA31a). The results of the fire assay analyses are illustrated in Figure 11-22. The majority (98.8%) of the blanks fell within an allowable threshold, with the majority (76.7%) returning values below the Au-AA23 detection limit of 0.005 ppm Au. Three blanks fell outside of the 3x the lower detection limit. These failures were not cause for re-assay as they either did not fall within a mineralized zone or other passing blanks or CRMs were present within the fire assay batch. No significant issues were identified, and the results are considered acceptable.



Source: APEX, 2023

Figure 11-22: Control chart of coarse blank samples assayed for the 2021 RC and core drilling programs

Standards were inserted into the sample stream at regular intervals (every 20 samples) alternating each CRM type. A total of 259 standards were analyzed via fire assay (Au-AA23) and Preg-Robbing cyanide leach (Au-AA31, Au-AA31a). Standards used during the 2021 RC drilling included four different certified reference materials from CDN Resource Laboratories Ltd. (CDN) and OREAS:

- CDN-CM-29 (Au = 0.720 ppm, n = 62);
- OREAS 263 (Au = 214 ppb, n = 62);

- OREAS 277 (Au = 3.39 ppm, n = 63); and
- OREAS 506 (0.364 ppm, n = 64).

Standards used during 2021 core drilling included two different certified reference materials from CDN:

- CDN-GS-P1A (Au = 0.143 ppm, n = 4); and
- CDN-GS-P5E (Au = 0.655 ppm, n = 4).

The results of the fire assay analyses are illustrated in Figure 11-23 to Figure 11-27.

The majority of assay results for the standards analyzed during the 2021 drill programs fell within 3 standard deviations from the certified value based on the standard deviation reported by the manufacturer. A sample is considered a failure should the assay results fall outside of this range. If a failed sample occurred in a fire assay batch that had drilling samples with gold assay values  $\geq 0.20$  ppm Au, and no other standard or blank samples passed in that batch, it was re-assayed. If a failed sample occurred in a fire assay batch that had no assays  $\geq 0.20$  ppm Au, the failure did not trigger re-assay procedures. None of the failures for the standards in 2021 fell within anomalous mineralized zones and in a fire assay batch with  $\geq 0.20$  ppm Au samples. Therefore, no samples were sent for re-assay. No significant issues were identified, and the results are considered acceptable.

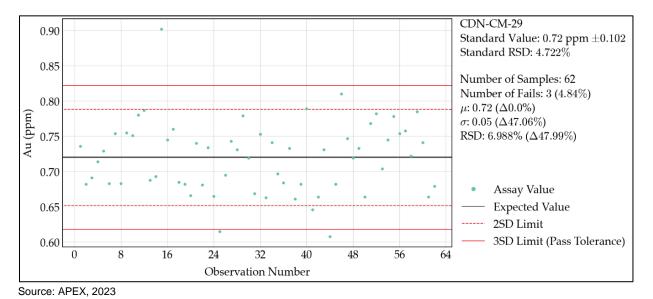



Figure 11-23: Control chart of CDN-CM-29 CRM samples assayed for the 2021 RC drilling program

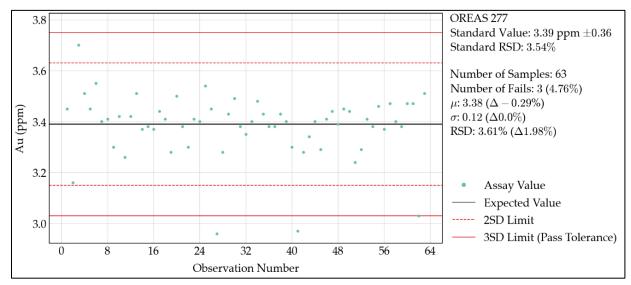



Figure 11-24: Control chart of OREAS 277 CRM samples assayed for the 2021 RC drilling program

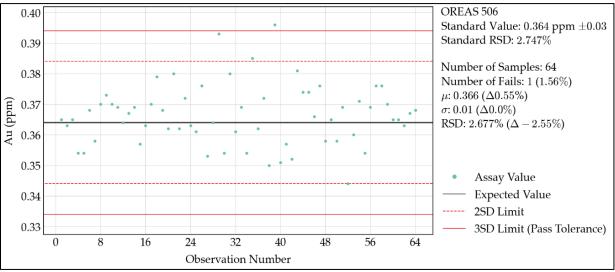



Figure 11-25: Control chart of OREAS 506 CRM samples assayed for the 2021 RC drilling program

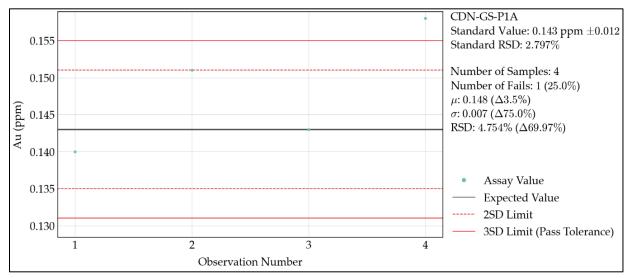
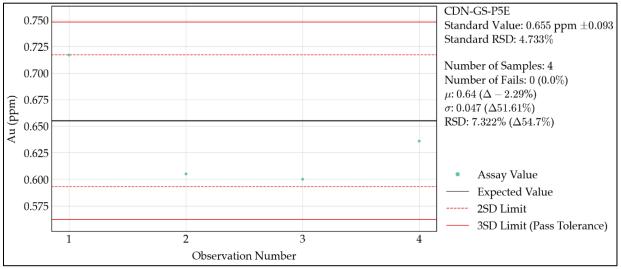
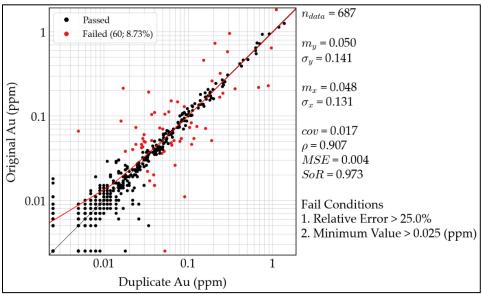




Figure 11-26: Control chart of CDN-GS-P1A CRM samples assayed for the 2021 core drilling program



Source: APEX, 2023

Figure 11-27: Control chart of CDN-GS-P5E CRM samples assayed for the 2021 core drilling program


#### 11.3.5 2022 Drilling QA/QC

The 2022 drill program consisted of a total of 26,466 RC samples and 2,195 core samples sent to ALS for gold analysis, along with 3,770 QA/QC samples inserted at predetermined intervals. The QA/QC samples included 608 duplicate samples, 1,553 blank samples, and 1,609 standards. The same procedures from 2021 for inserting QA/QC samples and duplicates was followed for the 2022 program. As of December

31, 2022, the effective date of this report, the following sample assays had been received with the results discussed in the following section: 26,190 RC samples, 1,852 core samples, 602 field duplicates, 1,533 coarse blanks, and 1,580 standards. Upon receiving the assay results, samples that did not undergo assay for reasons such as insufficient sample material, were removed from QA/QC analysis and do not appear in the following plots.

Field duplicates were inserted into the sample stream every 50 samples for the 2022 RC drill program. Duplicates were not inserted in the core program. A total of 588 duplicates were sent for analysis via fire assay (Au-AA23) and cyanide leach (Au-AA31, Au-AA31a).

A total of 700 field duplicates from 2021 and 2022 drilling programs were sent for fire assay, 687 returned with assay values. Failures were assessed with a scatter plot. Passing requirements were considered to be 90% of the duplicate pairs with relative error  $\leq$ 25%. The 2021 and 2022 drilling program duplicates met passing requirements; no further evaluation was required. The overall duplicate results show a fair amount of scatter but there is no apparent bias and the results are considered acceptable. The results of the fire assay analyses are illustrated in Figure 11-28. Overall, the data show a good correlation ( $\rho$  = 0.907) with no major issues to report.



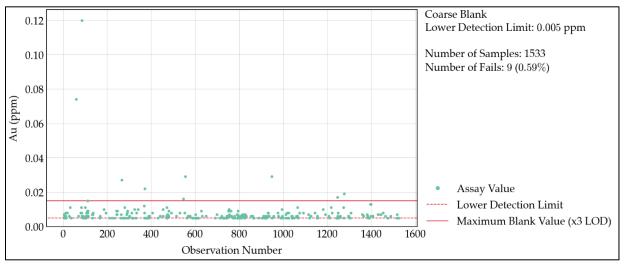

Source: APEX, 2023

Figure 11-28: Scatter plot of 2021 and 2022 field duplicate samples, Au (ppm) fire assay results

The 2021 and 2022 duplicate analysis show slightly more scatter than previous years, however, there does not appear to be a bias, and combined with the observation that the standards all performed within normal acceptable parameters, might indicate that some samples were either poorly homogenized or not crushed to proper sizing specifications. The results are considered acceptable on this basis.

Coarse blanks were inserted into the sample stream at regular intervals (every 20 samples). A total of 1,533 coarse blanks were analyzed via fire assay (Au-AA23) and Preg-Robbing cyanide leach (Au-AA31,

Au-AA31a). The results of the fire assay analyses are illustrated in Figure 11-29 below. The majority (99.2%) of the blanks fell within an allowable threshold, with the majority (91%) returning values below the Au-AA23 detection limit of 0.005 ppm Au. Four blanks fell outside of the 3x the lower detection limit. One of these blanks was within a mineralized zone and was submitted for re-assay along with the previous and following 9 samples in the sample sequence. The re-assay of this blank returned the same Au value in both Cyanide Leach (CN) and Fire Assay (FA) assays indicating that it contained a very small quantity of gold that may or may not have been the result of contamination. No significant issues were identified, and the results are considered acceptable.



Source: APEX, 2023

Figure 11-29: Control chart of coarse blank samples assayed for the 2022 RC and core drilling programs

Standards were inserted into the sample stream at regular intervals (every 20 samples) alternating each CRM type. A total of 1,216 standards were analyzed via fire assay (Au-AA23) and Preg-Robbing cyanide leach (Au-AA31, Au-AA31a). Standards used during 2022 RC drilling included four different certified reference materials from CDN Resource Laboratories Ltd. (CDN) and OREAS:

- CDN-CM-29 (Au = 0.720 ppm, n = 378);
- OREAS 263 (Au = 214 ppb, n = 410);
- OREAS 277 (Au = 3.39 ppm, n = 373); and
- OREAS 506 (0.364 ppm, n = 397).

Standards used during 2022 core drilling included three different certified reference materials from CDN, as follows, but early on in the program transitioned to use the above standards, the same as the 2022 RC program:

- CDN-GS-P1A (Au = 0.143 ppm, n = 3);
- CDN-GS-P5E (Au = 0.655 ppm, n = 2); and

CDN-GS-2U (Au = 2.12 ppm, n = 1).

The results of the fire assay analyses are illustrated in Figure 11-30 to Figure 11-36.

The majority of assay results for the standards during the 2022 drill program fell within three standard deviations from the certified value based on the standard deviation reported by the manufacturer. A sample is considered a failure should the assay results fall outside of this range. If a failed sample occurred in a fire assay batch that had drilling samples with gold assay values ≥0.20 ppm Au, and no other standard or blank samples passed in that batch, it would have been re-assayed. If a failed sample occurred in a fire assay batch that had no assays ≥0.20 ppm Au, the failure did not trigger re-assay procedures. None of the failures for the standards in 2022 fell within anomalous mineralized zones and in a fire assay batch with ≥0.20 ppm Au samples. Therefore, no samples were sent for re-assay. No significant issues were identified, and the results are considered acceptable.

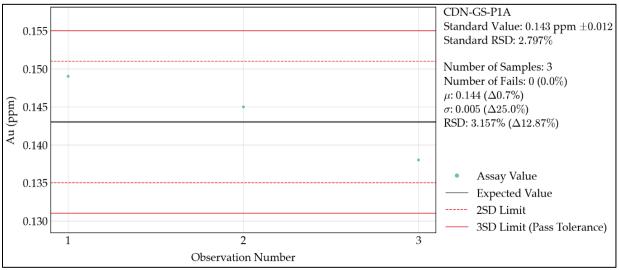



Figure 11-30: Control chart of CDN-GS-P1A CRM samples assayed for the 2022 core drilling program

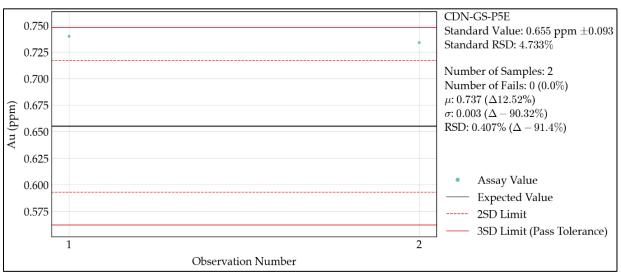



Figure 11-31: Control chart of CDN-GS-P5E CRM samples assayed for the 2022 core drilling program

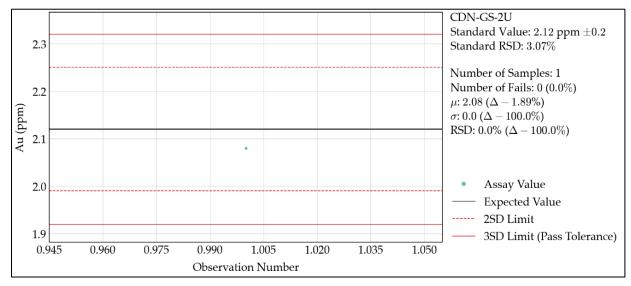



Figure 11-32: Control chart of CDN-GS-2U CRM samples assayed for the 2022 core drilling program

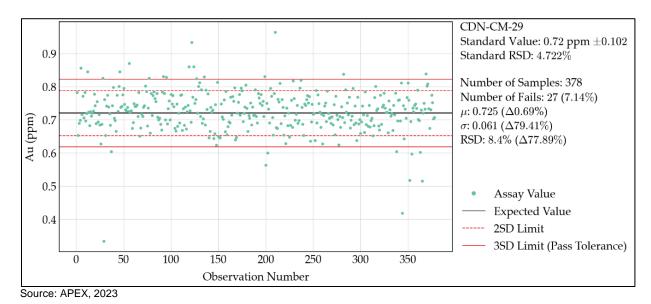



Figure 11-33: Control chart of CDN-CM-29 CRM samples assayed for the 2022 RC and core drilling programs

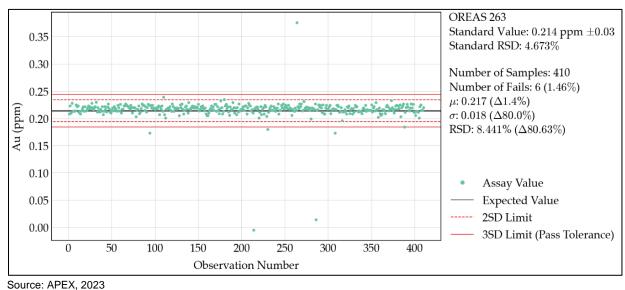



Figure 11-34: Control chart of OREAS 263 CRM samples assayed for the 2022 RC and core drilling

programs

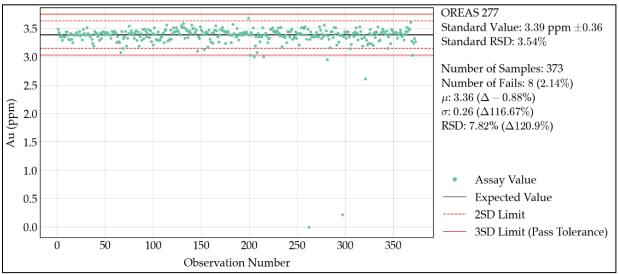
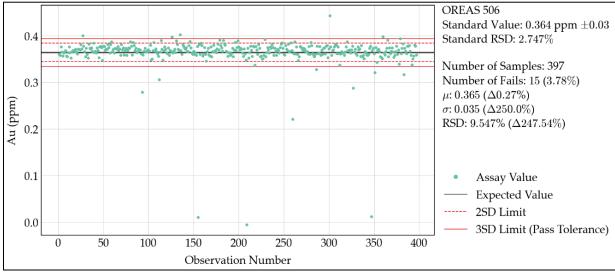




Figure 11-35: Control chart of OREAS 277 CRM samples assayed for the 2022 RC and core drilling programs



Source: APEX, 2023

Figure 11-36: Control chart of OREAS 506 CRM samples assayed for the 2022 RC and core drilling programs

There are a number of marginal failures shown of Figure 11-33 to Figure 11-36 that are of little concern. There are a few fairly significant failures that potentially represent sample mix-ups. These significant failures were in batches with no contained mineralized intervals and therefore were not followed up with any re-assays or further investigation. The results to date are considered acceptable by the author.

#### 11.3.6 Umpire Checks

To ensure accuracy from ALS, umpire check pulp samples were selected from the 2021 and 2022 drilling assay campaigns and sent to Bureau Veritas (BV) (an accredited assay laboratory) to be re-assayed and compared to the original ALS assay results. Both ALS and BV are independent of the author and the Issuer.

Umpire samples were preferentially selected from significant mineralization intersections that illustrate both significant grade and thickness. The selected intervals included shoulders before and after the mineralization intersection into waste to allow the mineralization boundary to be tested. Approximately 10% of the total number of samples utilized in the 2022 Mineral Resource Update were selected and sent to BV for fire assay. CRM's were inserted every 20 samples with the umpire check pulps, but no coarse blanks were inserted into the sample stream. No prep work was completed at BV as samples from ALS met their pulverization standards. Best practices recommend ≤15% failure rate across all samples sent for umpire checks (Figure 11-37). Pan umpire samples resulted in a failure rate of 15% for the 2021 and 2022 drilling programs. All CRMs passed within 3SD's of their certified Au values.

While the results are considered acceptable, since the failure rate is at the best practices threshold, further investigation was conducted to attempt to determine the cause of failures. A statistical and temporal review of the samples were performed, with no significant patterns discernible. The failures seem to be distributed such that there is no indication of bias. Further investigation maybe warranted including checking the homogenization and pulverization (crush size) of the pulps at ALS. Further examination including but not limited to, sieve analysis of the pulverized material prior to fire assay to understand the particle size distribution of the pulp samples should be considered. However, the author considers the results acceptable for their intended use in this technical report.

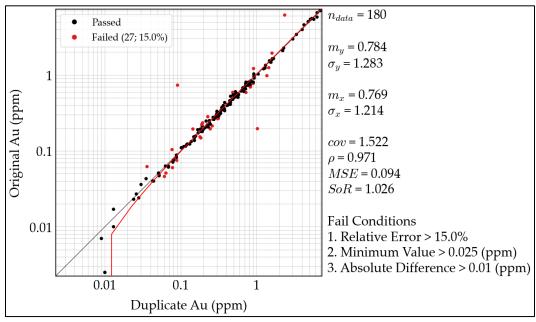



Figure 11-37: Scatter plot comparison of umpire samples, ALS assays (y-axis) against the BV assays (x-axis) for the 2021 and 2022 drill programs

### 11.3.7 Adequacy of Sample Collection, Preparation, Security and Analytical Procedures

The 2018 to 2022 sample collection, sample preparation, security and analytical procedures used at the Pan Project are appropriate for the type of mineralization that is being evaluated and the stage of the Project. The QA/QC measures including the insertion rates and performance of blanks, standards, and duplicates for the 2018-2022 drill programs indicate the observed failure rates are within expected ranges and no significant assay biases were apparent. Based upon the evaluation of the drilling, sampling and QA/QC programs completed by Calibre, it is Mr. Dufresne's opinion that the Pan Project's drill and assay data are appropriate for use in the resource modeling and estimation work discussed in Section 14.

### 12 Data Verification

## 12.1 Geology and Resources

There have been numerous attempts to verify and validate historical drilling on the Pan Project. Of these, the most extensive data verification program was completed by Gustavson Associates on behalf of Midway in 2012 (Crowl et al., 2012a). The most recent data verification was completed by SRK Consulting (US) Inc. on behalf of the issuer Calibre (SRK 2017 and SRK 2019). For more details regarding the historical data verification see the above reports. This section will focus on the data verification conducted by APEX personnel and the Co-author and QP Mr. Dufresne on behalf of Calibre. APEX personnel and Mr. Dufresne conducted their own independent verification of the drillhole database in 2019 – 2020 and again in 2022 and are not relying on past validation efforts. The drillhole database was examined and checked in detail, and was found to have only minor typographical errors, which were corrected. The drillhole database is deemed to be in good condition and suitable for mineral resource estimation.

Mr. Dufresne visited the Pan Mine most recently on January 28th and 29th, 2022 and conducted site visits to the various pits and reviewed the geology across the project.

#### 12.2 Database Data Verification Process

APEX personnel at the request of Calibre compiled all digital drilling data into a Geosparks Analytics database. This was a combination of historical data compilations from SRK, as well as original Calibre assay certificate data and geological logs from the 2018 to 2022 modern drilling. The compilation included collar coordinates, downhole survey information, geological interval data, and assay information. All data were compiled into the Geosparks database. A total of 786 drill holes and 261,522 blast holes were compiled into the database. No data verification was conducted on the blast hole data. The blast hole data were not used in resource estimation but were used to assist in guiding the domain shapes and trends.

Once compiled, a brief and concise check program was completed comparing between the original drill logs, assay certificates, and collar coordinates, and the compiled database. The Geosparks database comes with verification tools and these were also employed to assist in the data verification. Original assay certificates and geological logs were utilized to check the Geosparks database for various generations of drilling. APEX personnel and Co-author Mr. Dufresne verified that the original data (including the pre-2018 drilling data) were adequately digitized and properly imported into the Geosparks database. Approximately 10% of the historical (pre-2018) drillhole data, including collars, downhole surveys (if present), geology and assays were checked against hardcopy paper logs and certificates in order to verify the historical data in Geosparks database. Minor typos and columns mismatches were found and rectified, but overall, the database is considered to be accurate and acceptable for resource estimation and mining given the current data at hand.

All the Calibre drilling data for 2018-2022 was compiled by APEX personnel from original data provided by Calibre into the Geosparks database and was reviewed by the Co-author and QP. The 2018 – 2022 drilling data contained adequate QA/QC data as summarized in Section 11. The geological logs were compared to the original paper copies for digitizing errors, and no errors were found. At the time of the

Geosparks database compilation, the 2022 drill program was underway and near completion. The 2022 drill hole data were validated and subsequently compiled into the Geosparks database. Mr. Dufresne considers the Pan drillhole database, including the historical pre 2018 data and the 2018 to 2022 data, well validated and suitable for the preparation of the MRE and Minerals Reserves as presented herein.

#### 12.3 Current Data Verification

On January 28th and 29th, 2022 Mr. Dufresne, author and QP visited the Property to validate the historical and modern drilling. During his visit, numerous historical and Calibre drill collars were located and recorded using a hand-help GPS. Although most historical drill sites were unmarked in the field, collars were identifiable by remnant pad disturbance and drill cuttings. The Property visit found collar locations to be consistent with the drillhole database. Mr. Dufresne also verified drill core and RC chips from modern drill programs. The recovery and sample quality, as well as the geology was compared against the recorded information in the geology logs. Minor typos were noted, however no major issues were identified.

### 12.4 Metallurgy

The QP for metallurgy has been involved with and overseen most testwork on site and verifies that the data supporting the metallurgical assumptions for this report is valid.

#### 12.5 Environmental

The QP has reviewed and accepted the following documents used to prepare Section 20, Environmental Studies, Permitting and Social or Community Impact:

BLM. 2013. Pan Mine Final Environmental Impact Statement Volume I and II, November 2013.

Haley Aldrich, 2020. Standard Reclamation Cost Estimator (SRCE), August 2020. The data was verified by comparing the authorized disturbances with the authorized reclamation permit. The 2020 cost data utilized in the SRCE was that authorized by the Nevada Division of Environmental Protection and U.S. Bureau of Land Management.

Haley Aldrich. December 23, 2020, Pan Mine Life of Mine Asset Retirement Obligation Estimate 2020. The disturbance acres and costs used to develop the costs were verified in coordination with Haley Aldrich.

#### 12.6 Mine Economics

Economic models and costing were developed by QP using first principals and through careful review of actual costs from the previous year of operating activities.

## 12.7 Rock Mechanics

The QP reviewed and analyzed the rock mass and visible structures and formations during their site visit. The data observed in the field was consistent with that reported in previous rock mechanics studies.

# 13 Mineral Processing and Metallurgical Testing

Metallurgical testing programs have been performed for the Pan project since 2010, completed by Resource Development Inc. (RDi), Phillips Enterprises LLC, Kappes Cassidy and Associates (KCA), McClelland Laboratories, Inc. and Forte Analytical. The project has changed ownership several times and undergone metallurgical testwork programs at each stage. GRP Minerals Corp. acquired the Pan project from Midway Gold Corp in May of 2017 and was in operation for three years. After that, the company name was changed to Fiore Gold Corp. Calibre Mining received ownership in early 2022.

Two NI 43-101 reports have been issued on the property (SRK, 2017 and SRK, 2021) which include details of testwork completed up to 2020. This section will summarize historical testwork but discuss in more detail work recently undertaken by Calibre. The reader is encouraged to review the previous technical reports for more information on historical testwork.

It should be noted Pan material includes two quite different ore types: harder, low-clay siliceous zones and softer, clay-rich argillic zones. In 2014, the heap leach pad failed due to poor percolation from a high proportion of clay-rich material. Since then, the Pan property has operated with a target blend of 60:40 "hard" to "soft" material and not experienced any issues with pad stability or solution pooling.

Historically, samples for metallurgical testwork were selected using domain definitions that changed over time. Initially, they were selected as being silicified or argillized material and later changed to North vs. South pit areas (North considered hard and South considered soft). Included in the North category are the Banshee, Red Hill and Campbell zones. Included in the South category is Dynamite, with Black Stallion in the middle. Recently, Calibre has returned to logging blasthole cuttings to better define the lithology and alteration as hard or soft within the North and South mining areas.

A consequence of these changing domains is sample testwork results cannot be related to current blending practices or the target 60:40 hard to soft blend. While Pan is achieving reasonable gold extractions from the pad under well controlled conditions, it is the QP's opinion that additional metallurgical testwork should be undertaken with the current metallurgical domains to better predict future ore performance.

Historical testwork by previous owners has demonstrated an increase in gold recovery through multi-stage crushing (to a 1½" passing size) compared with run-of-mine (ROM) material as well as from agglomeration of crusher product prior to pad placement. Despite these results, GRP made the decision in 2019 to only primary crush to 6" passing as well as not agglomerate. Since 2019, Pan has used cement to control pad pH levels, with a change to lime in 2021. Pan operates under constrained solution rates at between 0.001 gpm/ft² to 0.0026 gpm/ft² over the 90-day cycle period, with a solution to ore ratio of 1:1 for the first cycle.

## 13.1 Midway Gold Testwork (to 2017)

Six trench samples were collected from open faces in the pits for this program, with five from the South and one from the North. Each represented major lithologies of argillized shale, limestone and breccia as well as silicide breccia limestone or breccia shale. The testwork program was conducted by Resource Development Inc. (RDi, 2017a, RDi, 2017b).

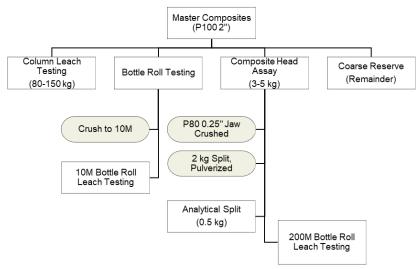
For the samples tested, RDi reported -¾" crushed leach tests with 52% gold extraction for North material and 82% gold extraction for South material. RDi projected gold extractions for full-scale, commercial operation to be 80% for South material (ROM only) and 65% for North ROM material and 80% for North crushed to -1½". Carbon loading tests showed low likelihood of any issues in the Adsorption Desorption Recovery (ADR) plant using carbon columns.

At that time, most of the column testing had been done on -1½" crushed material, with RDi completing 10 tests at -1½", 11 tests at -1" and 14 tests at -½". A combination of Phillips Enterprises and RDi testing had been done on -2" (4 tests), -4" (2 tests) and 6" (2 tests). That is, limited testing had been done at coarser than 1½" but the effect of crush size on gold extraction was not expected to be significant by the metallurgical QP involved.

### 13.2 GRP Minerals Testwork (to 2018)

In August 2018, a detailed test program was completed by RDi on a 900 kg bulk sample of crushed material. The source, lithology, and representativeness of this sample was not disclosed. The sample was subjected to mineralogy, detailed head assays and particle size analysis and then used to conduct four bottle roll tests and eight column leach tests. The purpose of the study was to determine agglomeration requirements.

Bottle roll tests results averaged 56% gold extraction for a 10 mesh (2 mm) crush size and 77% for a 65 mesh (212 µm) grind size suggesting a strong correlation to recovery and particle size. Two static leach tests were also conducted on a split of the column leach test material. The static tests produced extractions between 63% and 68% with an average of 66%.


Eight column leach tests were conducted with different lime and cement dosages. The extractions were not impacted by lime or cement dosages and ranged between 59% and 64% based on residue and solution assays. However, cement agglomerated columns had much lower densities, lower compactions and higher permeabilities. Extractions based on head and residue size-by-size assays were between 71% and 74%. It was noted the gold grade of the -200 mesh (75  $\mu$ m) fraction was twice the gold content of all coarser fractions and yielded over 90% of the gold. Extractions were significantly lower in the coarser fractions.

An onsite, test heap program was begun in December 2017 to evaluate differences in gold extraction between crushed and ROM material. The test was conducted on a 30,000 ton sample (50:50 North and South material). Two test heaps were constructed: a 13,002 ton ROM heap and a 9,158 ton crushed heap. Head grades were determined from crusher samples, ore control short-term model and calculated from trench samples of the leached heap and solution assays. From this range of samples, gold extractions were calculated between 51% and 67% for the ROM heap and between 64% and 74% for the crushed material heap.

### 13.3 Recent Calibre Mining Testwork

In 2022, Forte Analytical completed a detailed test program on 3,414 ft of whole PQ core (85 mm diameter) from 15 drillholes provided by Calibre Mining (Forte Analytical, 2022). The core intervals were logged and composited into eight samples: four from the South pit (siltstone, limestone, limestone/clay and limestone/calcite), two from Red Hill/Banshee pit (argillic, silicified) and two from the North pit (silicified, non-silicified).

A flowsheet showing the master composite preparation is shown in Figure 13-1.



Source: Forte Analytical, 2022

Figure 13-1: Master Composite Sample Preparation Flowsheet

Fire assay and cyanide-soluble ("shake test") gold assays are shown in Table 13-1 for the eight composite samples. Cyanide-soluble to fire assay ratios (CN/FA) were between 54% and 123% as a proxy indication of ultimate gold extraction. While South "soft" samples showed higher CN/FA values, this was not always the case; the same was true for North "hard" samples.

**Table 13-1: Master Composite Gold Assays** 

|                         | Fire Assay (oz/ton) | CN Soluble (oz/ton) | CN/FA % |
|-------------------------|---------------------|---------------------|---------|
| South Siltstone         | 0.0210              | 0.0169              | 80%     |
| South Limestone         | 0.0070              | 0.0038              | 54%     |
| South Limestone/Clay    | 0.0042              | 0.0051              | 123%    |
| South Limestone/Calcite | 0.0201              | 0.0201 0.0156       |         |
| Banshee Argillic        | 0.0130              | 0.0075              | 57%     |
| Banshee Silicified      | 0.0078              | 0.0078 0.0068       |         |
| North Silicified        | 0.0126              | 0.0092              | 73%     |
| North Non-Silicified    | 0.0123              | 0.0081              | 66%     |

LECO furnace carbon and sulfur species are shown in Table 13-2, with Banshee and North samples showing sulfide content while organic carbon levels (by difference) were below detection for all samples.

Table 13-2: Master Composite LECO Carbon & Sulfur

|                         | Total Carbon % | Inorganic Carbon % | Total Sulfur % | Sulfide % |  |
|-------------------------|----------------|--------------------|----------------|-----------|--|
| South Siltstone         | 1.00           | 1.00               | 0.15           | BD        |  |
| South Limestone         | 9.42           | 9.42               | 0.03           | BD        |  |
| South Limestone/Clay    | 7.97           | 7.97               | 0.34           | 0.02      |  |
| South Limestone/Calcite | 7.40           | 7.40               | 0.58           | 0.42      |  |
| Banshee Argillic        | 0.07           | 0.07               | 0.70           | 0.48      |  |
| Banshee Silicified      | 0.79           | 0.79               | 0.79           | 0.84      |  |
| North Silicified        | 0.10           | 0.10               | 1.17           | 1.00      |  |
| North Non-Silicified    | 0.06           | 0.06               | 1.43           | 1.10      |  |

Source: Forte Analytical, 2022

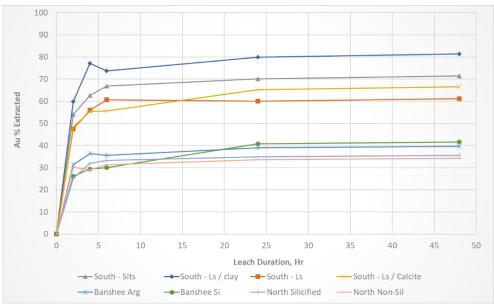
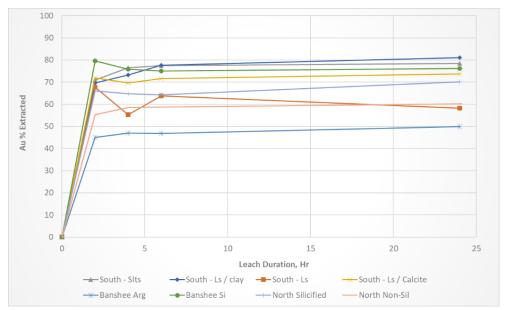
XRD results for the eight composites (Table 13-3) showed a range of muscovite levels, while kaolinite did not only occur in clay or argillic samples. Calcite level were very high in the limestone samples.

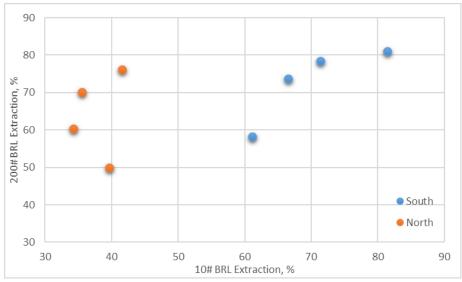
Table 13-3: Master Composite XRD Main Minerals (not 100% total)

|                         | Quartz % | Muscovite % | Kaolinite % | Calcite % | Alunite % | Barite % |
|-------------------------|----------|-------------|-------------|-----------|-----------|----------|
| South Siltstone         | 64.3     | 26.4        | 3.6         | 5.7       | -         | -        |
| South Limestone         | 14.3     | 4.5         | 0.5         | 80.7      | -         | -        |
| South Limestone/Clay    | 26.4     | -           | 2.6         | 68.6      | -         | -        |
| South Limestone/Calcite | 23.8     | 9.0         | -           | 61.5      | -         | 4.7      |
| Banshee Argillic        | 66.9     | 16.8        | 2.7         | 4.8       | 3.6       | 5.2      |
| Banshee Silicified      | 92.5     | -           | 1.8         | -         | 4.8       | -        |
| North Silicified        | 82.9     | 7.9         | 1.3         | -         | 1.2       | 6.7      |
| North Non-Silicified    | 76.8     | 12.4        | 1.3         | -         | 2.0       | 7.5      |

Bottle roll leach testing was completed on samples crushed to 10 mesh (2 mm) and ground to 200 mesh (75  $\mu$ m). All tests were completed for 48 hours at 40% by weight solids with a leach solution containing 1g/L NaCN and a pH of 10.5 to 11. Tests were allowed to run with intermediate solution samples collected at periods specific to the particle size.

Figure 13-2 shows the coarser size gold kinetics over 48 hours while Figure 13-3 shows the ground size gold kinetics. A range of final gold extractions were observed with most of leaching completed after six hours. Only one test (200 mesh ground, South Ls) showed any gold losses from solution after this initial period. Interestingly, the ground bottle roll leach test final extractions were lower than that predicted by the CN/FA values in Figure 13-1.

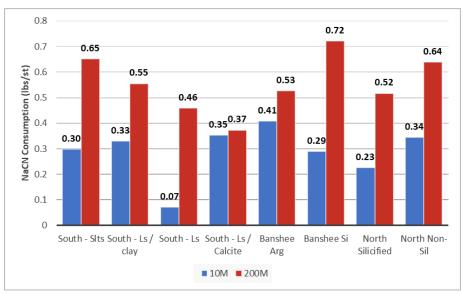





Figure 13-2: Master Composite 10 mesh (2mm) Bottle Roll Gold Kinetics



Source: Forte Analytical, 2022

Figure 13-3: Master Composite 200 mesh (75µm) Bottle Roll Gold Kinetics


As an indication of size dependence, final gold extractions for the ground vs. crushed conditions are plotted in Figure 13-4. South samples are plotted with a different color to North/Banshee samples. As was observed in historical testing, South material showed minimal effect of particle size on gold extraction while North material extractions increased significantly between 10 mesh and 200 mesh feed sizes.



Source: SRK, 2023

Figure 13-4: Master Composite 200 mesh vs. 10 mesh Bottle Roll Leach Extractions

Reagent consumptions were considered moderate by Forte Analytical with sodium cyanide (in lb/ton) increasingly slightly for the ground tests (see **Error! Reference source not found.**) and lime consumptions (in lb/ton) increasing significantly for the North/Banshee samples (see Figure 13-6). It is noted that Calibre have recently changed to lime instead of cement at a 3.5 lb/ton equivalent addition.



Source: Forte Analytical, 2022

Figure 13-5: Master Composite Bottle Roll NaCN Consumption

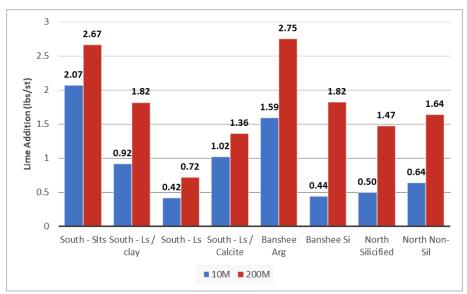



Figure 13-6: Master Composite Bottle Roll Lime Consumption

Column leach testing was completed on all composites at 80% passing 1½". Ten inch diameter columns were loaded to a height of 10 ft with 1,000 ppm NaCN solution applied at a pH of 10 to 11, using quicklime (supplied by Calibre with a CaO activity of 64%). Solution application rates were targeted to between 0.004 and 0.005 gpm/ft². Leach durations of the columns were stopped at 46 days at the request of Calibre, following their standard testing protocol.

Final extractions ranged from 43% to 82%; although, extractions for most columns should be considered incomplete and the kinetic profiles were still increasing at the time of column take-down. The average for South pit materials was 74%, with Banshee and North pit materials at 49% (see Figure 13-7).

Slump tests were performed on all column residues (see Table 13-4).

Table 13-4: Master Composite Column Residue Slump

| Composite Type          | % -200 mesh | Initial Height (in) | Final Height (in) | Slump % |
|-------------------------|-------------|---------------------|-------------------|---------|
| South Siltstone         | 2.9         | 119.0               | 110.6             | 6.8     |
| South Limestone         | 1.8         | 116.9               | 112.6             | 3.8     |
| South Limestone/Clay    | 28.0        | 117.7               | 111.8             | 5.1     |
| South Limestone/Calcite | 12.7        | 117.3               | 111.4             | 5.2     |
| Banshee Argillic        | 26.2        | 116.9               | 111.0             | 5.1     |
| Banshee Silicified      | 0.4         | 58.3                | 57.9              | 0.9     |
| North Silicified        | 1.2         | 118.5               | 117.0             | 1.3     |
| North Non-Silicified    | 2.6         | 117.7               | 116.9             | 0.9     |

Source: Forte Analytical, 2022

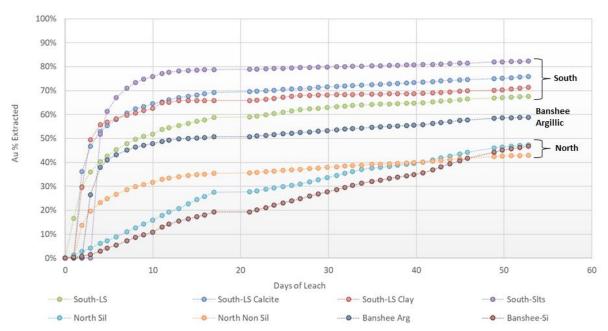



Figure 13-7: Master Composite Column Leach Gold Kinetics

South samples reported a consistent 5% or greater slump at this loading height while silicified North/Banshee samples showed minimal slumping. Permeability testing was also performed on the column residues (see Figure 13-8).

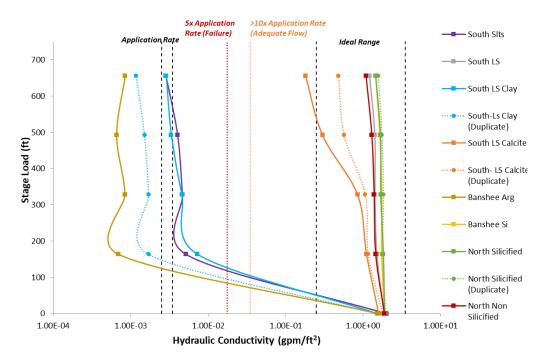



Figure 13-8: Master Composite Column Residue Permeability (equivalent load of 164 to 656ft)

Forte measured the hydraulic conductivity (in gpm/ft²) for packed cells at applied loads equivalent to between 50 m and 200 m (164 to 656 ft). A conductivity of 0.002 gpm/ft² or 5x solution application rate, was considered the lower limit for a failed test. At 50 m loading, most of the South samples failed (along with the Banshee argillic) while most of the North samples passed up to 200 m loading (along with South limestone). The results shown in Figure 13-8 suggest loading above 50 m did not further impact hydraulic conductivity.

#### 13.4 QP Comments

Metallurgical testwork results on Pan samples have demonstrated a wide range of column leach extractions as well as size sensitivity. This has been broadly related to "hard" vs. "soft" zones and/or clay content but changes in ore domaining have not allowed historical testwork to be applied to current operating practices. (For example, a target blend of 60:40 hard to soft.)

It is the QP's opinion that additional testwork be conducted to relate CN/FA values to final column leach extractions. Recent results have shown CN/FA values not to be reliable in estimating column leach extractions and will need other factors such as crushed size distribution and composition (e.g., XRD results) also included. Finally, rapid percolation or slump testing should be done to provide an indication of heap leach geotechnical conditions which are not a factor in bottle roll leach (or cyanide "shake") tests.

As there is uncertainty on the amount of "hard" material in the future, better geometallurgical characterization of the Pan deposits is needed to understand how the current blend can be modified when

constructing future leach pads. That is, a lower ratio of hard to soft needs to be demonstrated as the new target blend based on both column leach and permeability test results. In addition, a greater proportion of "hard" material needs to be characterized in both North and South Pan pit areas.

## 14 Mineral Resource Estimate

The Mineral Resource Estimate (MRE) herein is based upon historical drilling and drilling conducted from 2018 to 2022 by Calibre and supersedes the prior resource estimates for the Pan Mine. The resource estimate provided by Smith et al. (SRK 2021) is now superseded by the MRE detailed in this report due to mining depletion and new drilling. Other older resource estimates are all considered historical in nature.

This section details an updated MRE completed for the Pan Mine by APEX Geoscience Ltd. (APEX) of Edmonton, Alberta, Canada. Mr. Warren Black, M.Sc., P.Geo. and Mr. Tyler Acorn, M.Sc. contributed to the MRE under the direct supervision of Mr. Michael Dufresne, M.Sc., P.Geol., P.Geo, the QP who takes responsibility for Section 14. Mr. Dufresne has visited the property on a number of occasions, and most recently visited the property in January 2022. Mr. Black, M.Sc., P.Geo. visited the property in October and November 2019, and more recently in November 2022.

Definitions used in this section are consistent with those adopted by the Canadian Institute of Mining, Metallurgy and Petroleum ("CIM") Council in "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019 and "Definition Standards for Mineral Resources and Mineral Reserves" dated May 10th, 2014, and prescribed by the CSA NI 43-101 and Form 43-101F1, Standards of Disclosure for Mineral Projects. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability.

#### 14.1 Introduction

Statistical analysis, three-dimensional (3D) modelling and resource estimation was completed by Mr. Warren Black, M.Sc., P.Geo. and Mr. Tyler Acorn, M.Sc., of APEX (under the direct supervision of Mr. Michael Dufresne, M.Sc., P.Geol., P.Geo.). Mr. Dufresne takes full responsibility for Section 14 and the Pan MRE. The workflow implemented for the calculation of the Pan Gold Mine MRE was completed using the commercial mine planning software MICROMINE (v 22.0) and Resource Modelling Solutions Platform (RMSP; v.1.9.2). Supplementary data analysis was completed using the Anaconda Python distribution and a custom Python package developed by Mr. Black and Mr. Mr. Tyler Acorn, both of APEX.

Calibre provided APEX with the Pan Mine drill hole database that consists of analytical, geological, density, collar survey and downhole survey information. In addition, APEX personnel updated the geological model originally produced by Pennington et al. (SRK 2017), which was subsequently modified and refined by Deiss et al. (SRK 2019) and by APEX personnel in Smith et al. (SRK 2021).

APEX personnel spot checked the historical data reviewed and validated by Pennington et al. (SRK 2017) and later updated by Deiss et al. (2019), which included drill hole data collected by Calibre (formerly Fiore) in 2018 and found no significant issues. Drilling completed in 2018 by Calibre was reviewed and validated by APEX personnel. Drilling by Calibre in 2019 to 2022 was validated and compiled on-site by APEX personnel. In the opinion of Mr. Dufresne, the current Pan drill hole database is deemed to be in good condition and suitable to use in ongoing resource estimation studies and for the purposes used herein.

The MRE was calculated using a block model size of 20 ft (X) by 20 ft (Y) by 20 ft (Z). APEX personnel estimated the gold grade for each block using Ordinary Kriging (OK) with locally varying anisotropy (LVA)

to ensure grade continuity in various directions is reproduced in the block model. The block model was partially diluted by estimating a waste grade for the portions of the outer blocks overlapping the edge of the estimation domain boundaries using composites within a transition zone along the outer edge of the mineralized estimation domains. The waste grade was then proportionately combined with the estimated grade for the portion of the block within the mineralized domain to obtain a final grade for each overlapping block. This partially diluted block model was utilized for resource pit optimization studies and reporting herein. Details regarding the methodology used to calculate the MRE are documented in this section. The Mineral Resources defined in this section are not Mineral Reserves. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability.

Modelling was conducted in the North American Datum (NAD) of 1983 (Zone 11) BLM feet projection. The database consists of 1,786 drill holes containing useable downhole data completed at the Pan Mine between 1978 to 2022. APEX personnel constructed estimation domains using a combination of gold grade and all available geological information that helped constrain different controls on mineralization. The estimation domains were used to subdivide the deposit into volumes of rock and the measured sample intervals within those volumes for geostatistical analysis.

### 14.2 Drill Hole Data Description

#### 14.2.1 Calibre Drill hole Data

Calibre provided APEX with the historical drill hole database for the Pan Mine that comprised data collected from 1978 to 2022. As described in Sections 10 to 12, the drill holes completed up to and including 2016 were reviewed and validated by Pennington et al. (SRK 2017). APEX personnel spot checked approximately 10% of the historical data and found no issues. Deiss et al. (SRK 2019) and Calibre completed additional validation work in 2018 that was reviewed by Mr. Dufresne and was comprised of:

- Adding six historical holes to the database;
- Adding historical analytical results;
- Rectifying problems with the survey and collar files; and
- Adding the 71 drill holes completed by Calibre in 2018 to the drill hole database.

Data from Calibre's 2019 to 2022 drilling programs were captured and validated on-site by APEX personnel during each drill program. APEX personnel compiled the results with the previously validated and spot-checked historical data. In the opinion of Mr. Dufresne, the current Pan drill hole database is deemed to be in good condition and suitable to use in ongoing resource estimation studies.

The drill hole database used to calculate the MRE is comprised of 1,786 exploration drill holes yielding 128,508 sample intervals completed between 1978 and 2022. Between 1978 and 2016, a total of 1,184 holes totaling 379,641 ft of drilling was completed by various operators. Between 2018 and 2022 Calibre completed 602 holes totaling 280,446 ft.

#### 14.2.2 APEX Micromine Drill hole Database

In the Pan database presented to APEX, A total of 128,259 intervals were assayed for gold and returned a value greater than zero. However, a large portion of the assays are at or below the detection limit. A total of 11,480 either have a 0 or negative gold value in the assay database and were treated as samples returning assays below the detection limit. The gold value for these samples was replaced with a nominal waste value of 0.0025 ppm Au for the purposes of the resource estimation. A total of 243 drill hole intervals have explicit documentation that drilling did not return enough material to allow their analysis and are classified as "insufficient recovery" (IR). It is essential to distinguish between these two cases as they are treated differently during resource estimation. Intervals classified as "no sample" (NS) are assigned a nominal waste value of 0.0025 ppm Au, half the value of the lower detection limit of modern fire assay analyses. Intervals classified as "insufficient recovery" (IR) are left blank.

All data was validated using the Micromine validation tools when the data was imported into the software. Any validation errors encountered were data entry errors rectified by consulting original documentation. A detailed discussion on the verification of historical and 2021-2022 drill hole data is provided in Sections 10 to 12 of this report. Mr. Dufresne considers the current Pan drill hole database to be in good condition and suitable for ongoing resource estimation studies.

### 14.3 Geological Model

APEX updated the geological model using all available data collected by Calibre (2019-2022). No changes were required to the structural component of the Pennington et al. (SRK 2017) model because it was still accurate given the new Calibre data. The purpose of the geological model was to flag recovery and density for the MRE. APEX modelled argillic and silicification alteration, as well as the Tertiary Volcanics, Chainman, Pilot, and Devil's Gate formations (Figure 14-1). APEX utilized implicit modelling from the Micromine software package to construct these models. The formations were modelled using contact implicit modelling. Manual strings were created at the drillhole location of a given contact, and the Micromine fault modelling module was used to create surfaces for these contacts. These surfaces were merged to create 3D solids of each formation. For the alterations, the Micromine Intrusion modeler was used to create 3D solids from input interval data without creating manual strings. The argillic and silicification intervals from the geological logs were used to create the alteration models.

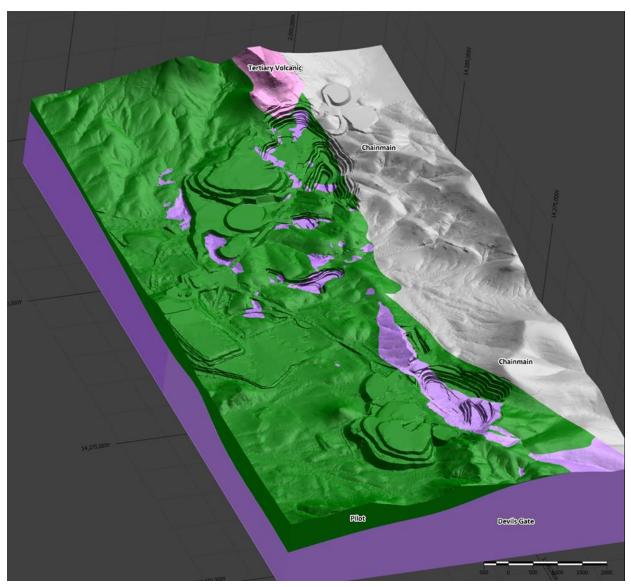



Figure 14-1: Oblique View of 2022 Formation Model for Pan Mine

# 14.4 Estimation Domain Interpretation

### 14.4.1 Geological Interpretation of Mineralization Domains

There are two dominant styles of gold mineralization at the Pan Mine. Both follow either the Devils Gate Limestone-Pilot Shale contact or the steeply dipping faults that trend north-south and are associated with or are parallel to the Branham Fault (Table 14-1).

Table 14-1: Geological Characteristics of Controls on Mineralization that occur within each Estimation Domain

| Geological Characteristics of Mineralization and Their Controls                                                                                        | Estimation Domains Characteristics are Present                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Near-vertical pipes and bodies of silicified solution breccia localized at the Pilot Shale-Devils Gate Limestone contact adjacent to the Branham Fault | Dynamite, North Pan, South Pan (West)                                                               |
| Stratiform-like breccia bodies and zones that run parallel or sub-<br>parallel to the folded Pilot Shale–Devils Gate contact                           | Banshee, Black Stallion, Campbell, Dune, Dynamite,<br>Mustang, Red Hill, South Pan (East), Syncline |

A total of 51 3D trend surfaces were modelled and used as input for the implicit modelling process to create the estimation domains. These trend surfaces ensured that the kriging honored the observed geological controls on mineralization. The trend surfaces were created using all available subsurface data, including RC and core drill hole assays, geological logs, and blasthole data. Nine of the trend surfaces represent faults associated with the silicified solution breccia. In contrast, the other 42 represent mineralization trends that run parallel or sub-parallel to the Pilot Shale—Devils Gate contact. The trend surfaces were modelled in a way where if it were a fault-controlled trend surface intersecting a contact-controlled trend surface, the intersection represents the orientation of a mineralized pipe like feature. In combination with all the trend surface's orientation, those intersections are used to inform the LVA described in Section 14.7. Only the contact-controlled trend surfaces are used as input for the implicit modelling applied to create the estimation domains described in Section 14.4.2.

### 14.4.2 Estimation Domain Interpretation Methodology

An implicit modelling approach was used for constraining the estimation domains to a gold grade shell while still honoring interpretations of local geological controls on mineralization. The raw RC and core drill hole analytical data were composited and classified as either ore or waste. Those composites were then manually flagged as to what estimation domain they belong to, then used as input by implicit modelling to generate 3D estimation domain wireframes. The contact-controlled trend surfaces described in Section 14.4.1 are used as input for the implicit modelling process to ensure the generated estimation domains honor the observed geological controls on mineralization. Each estimation domain was evaluated in 3D and on a section-by-section basis. Control points were inserted to constrain spurious features in the generated wireframes and ensure that the underlying geology is honored. The control points were used in a second pass of the implicit model to construct the final estimation domains. Plan, oblique and an example cross-sectional view are provided in Figure 14-2, Figure 14-3 and Figure 14-4 below.

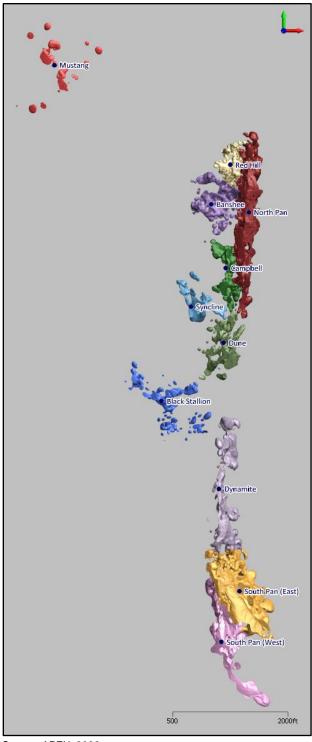



Figure 14-2: Plan View of the Estimation Domain Wireframes

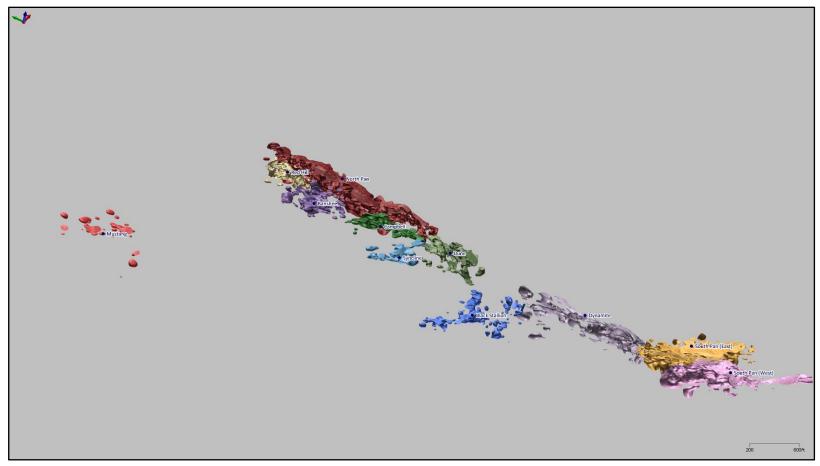



Figure 14-3: Oblique View of the Domain Wireframes Looking Down the Vector 045/-45

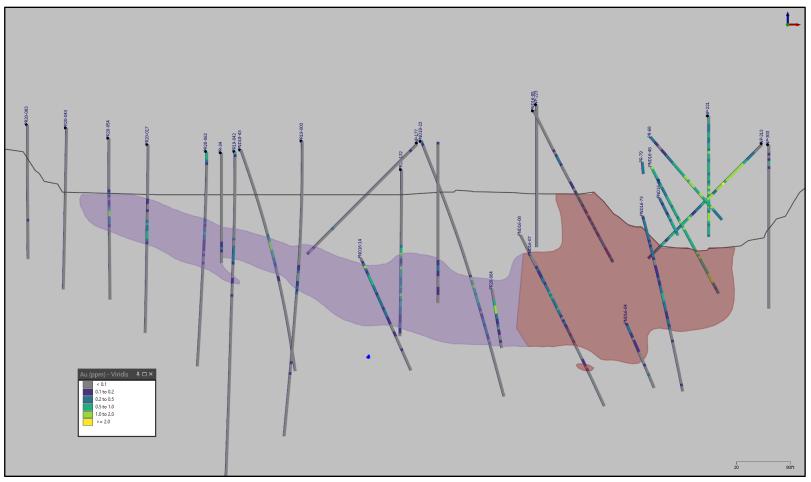



Figure 14-4: Cross-section Looking North along the Northing 14,280,385 N (purple – Banshee domain, red – North Pan domain

## 14.5 Exploratory Data Analysis and Compositing

### 14.5.1 Bulk Density

From 2020 to 2022, Calibre completed 31 core drill holes in which 1,006 density samples were collected and measured. In total, there are 1,264 density sample measurements for the Pan Project. The density samples were well placed within the deposit and provide a good spatial distribution. APEX personnel investigated the density sample measurements together with alteration, formation, lithology, and gold grade to determine the appropriate density domains and values. Two of the density measurements were outliers and unrepresentative and were therefore rejected in the original statistical analysis. Table 14-2 below lists the density values of each density domain used to assign density to each block in the MRE based on its assigned formation, alteration, and location.

Table 14-2: Tonnage Factors used in the MRE

| Lithology - Alteration - Location               | Specific Gravity (SG) in g/cm <sup>3</sup> | Tonnage Factor<br>(ft³/ton) |
|-------------------------------------------------|--------------------------------------------|-----------------------------|
| Volcanics                                       | 2.19                                       | 14.63                       |
| Chainman Shale                                  | 2.30                                       | 13.93                       |
| Pilot Shale – Unaltered – Mineralized           | 2.28                                       | 14.05                       |
| Pilot Shale – Unaltered - Waste                 | 2.22                                       | 14.43                       |
| Pilot Shale - Argilic                           | 2.20                                       | 14.56                       |
| Pilot Shale - Silica                            | 2.45                                       | 13.08                       |
| Devils Gate Limestone – Unaltered - Mineralized | 2.50                                       | 12.81                       |
| Devils Gate Limestone – Unaltered - Waste       | 2.55                                       | 12.56                       |
| Devils Gate Limestone - Argilic                 | 2.50                                       | 12.81                       |
| Devils Gate Limestone - Silica                  | 2.50                                       | 12.81                       |
| Mine Material                                   | 2.00                                       | 16.02                       |

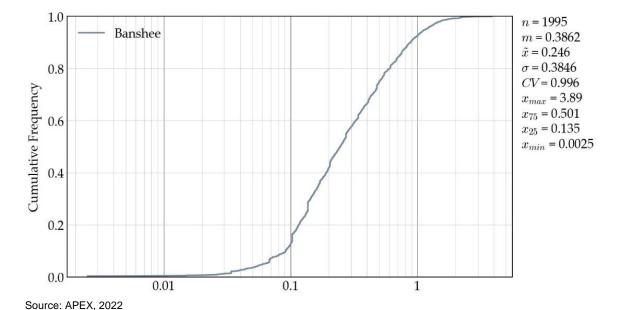
Source: APEX, 2022

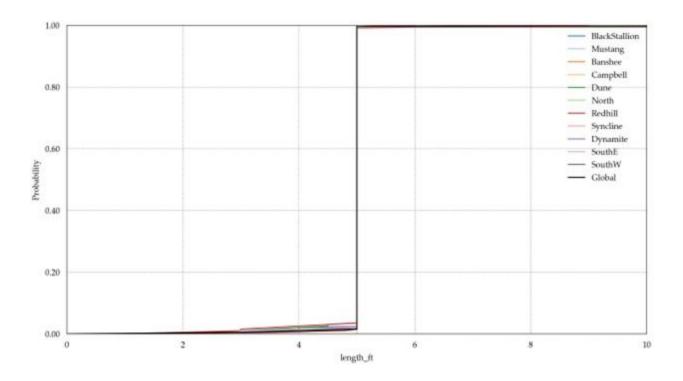
#### 14.5.2 Raw Analytical Data

Cumulative histograms and summary statistics for the raw (un-composited) assays from sample intervals contained within the ten estimation domains are tabulated in Table 14-3. Assays within each domain generally exhibit a single statistical population. Figure 14-5 illustrates an example distribution of raw gold assays within the Banshee estimation domain.

Table 14-3: Summary Statistics of Raw Gold Assays (in ppm) from Sample Intervals Flagged within each of the Ten Estimation Domain

|       | Global Ba | Barahaa | Black    | Commball | Dime  | Dymomito |         | Pan    | Red   | South Pan |       | Compline |
|-------|-----------|---------|----------|----------|-------|----------|---------|--------|-------|-----------|-------|----------|
|       | Giobai    | Banshee | Stallion | Campbell | Dune  | Dynamite | Mustang | North  | Hill  | East      | West  | Syncline |
| count | 37,588    | 1,995   | 1,917    | 1,296    | 1,354 | 3,226    | 360     | 11,724 | 1,978 | 7,914     | 5,181 | 643      |
| mean  | 0.44      | 0.39    | 0.52     | 0.38     | 0.23  | 0.35     | 0.51    | 0.45   | 0.64  | 0.40      | 0.50  | 0.49     |
| STD   | 0.55      | 0.38    | 0.70     | 0.35     | 0.22  | 0.40     | 0.58    | 0.53   | 0.81  | 0.53      | 0.62  | 0.67     |
| var   | 0.31      | 0.15    | 0.49     | 0.12     | 0.05  | 0.16     | 0.34    | 0.29   | 0.65  | 0.28      | 0.39  | 0.45     |
| CV    | 1.26      | 1.00    | 1.34     | 0.91     | 0.98  | 1.17     | 1.15    | 1.18   | 1.27  | 1.32      | 1.25  | 1.38     |
| min   | 0.00      | 0.00    | 0.00     | 0.00     | 0.00  | 0.00     | 0.00    | 0.00   | 0.00  | 0.00      | 0.00  | 0.00     |
| 25%   | 0.14      | 0.14    | 0.14     | 0.14     | 0.11  | 0.13     | 0.13    | 0.18   | 0.14  | 0.13      | 0.14  | 0.14     |
| 50%   | 0.27      | 0.25    | 0.29     | 0.26     | 0.16  | 0.23     | 0.29    | 0.32   | 0.31  | 0.22      | 0.27  | 0.25     |
| 75%   | 0.53      | 0.50    | 0.62     | 0.52     | 0.26  | 0.42     | 0.65    | 0.55   | 0.79  | 0.46      | 0.62  | 0.55     |
| max   | 20.55     | 3.89    | 6.51     | 3.16     | 1.85  | 7.88     | 3.60    | 20.55  | 7.58  | 9.91      | 8.68  | 5.79     |





Figure 14-5: Example Cumulative Frequency Plot of Raw Gold Assays (in ppm) from Sample Intervals Flagged within the Banshee Estimation Domain

### 14.5.3 Compositing Methodology

Downhole sample length analysis shows sample lengths range from 0.5 ft to 20.0 ft, with the dominant sample length being 5 ft. A composite length of 10.0 ft is selected as it provides adequate resolution for mining purposes and is equal to, or larger than all but one drill hole sample (Figure 14-6).

The length-weighted compositing process starts from the drill hole collar and ends at the bottom of the hole. However, the final composite intervals along the drill hole cannot cross contacts between estimation domains that demonstrate a hard boundary. Therefore, composites extending downhole are truncated when one of these contacts are intersected. A new composite begins at these contacts and continues to extend downhole until the maximum composite interval length is reached, or another truncating contact is intersected.

There are only a few instances where two estimation domains are in contact, and when this happens, the contact is treated as a hard boundary. Therefore, the resulting composites are fully contained within the estimation domains or are classified as waste if they lie outside of the estimation domain wireframes.



|      | Chibal  | MaxNation | Mustang | Renibor. | Campbell | Durer | North  | Redbill | Syndine | Dynamir | South | Southits |
|------|---------|-----------|---------|----------|----------|-------|--------|---------|---------|---------|-------|----------|
| ount | 128.501 | 1,917     | 360     | Face     | 1,296    | 1,354 | 11,735 | 1,981   | 643     | 3,235   | 7,914 | 5103     |
| mean | 502     | 496       | 4/47    | 4.96     | 500      | 495   | 4.98   | 494     | 503     | 417     | 4.96  | 7.00     |
| tdev | 1.67    | 0.28      | 0.26    | 0.20     | 0.14     | 0.31  | 0.25   | 0.37    | 8.33    | 029     | 0.30  | 0.23     |
| ex   | 0.33    | 0.06      | 6.05    | 0.04     | 103      | 0.06  | 0.05   | 0.08    | 011     | 0.05    | 0.06  | 0.04     |
| min  | 0.00    | 1.00      | 1.50    | 1.50     | 5.00     | 2.00  | 11.50  | 1.00    | 3.00    | 2.00    | 100   | 1.40     |
| Pio  | 5.00    | 500       | 500     | 520      | 500      | 5.00  | 5.00   | 5.00    | 500     | 5.00    | 500   | 5.00     |
| 150  | 5.00    | 500       | 500     | 5.00     | 5.00     | 3.00  | 5,00   | 5.00    | 5.00    | 5.00    | 5.00  | 5.00     |
| 190  | 5.00    | 500       | 5/00    | 5.00     | 5,00     | 5.00  | 5.00   | 5.00    | 5/00    | 5.00    | 5.00  | 5.00     |
| mas  | 540.00  | 5.50      | 5/00    | 5.50     | 10.00    | 5.00  | 15.00  | 9.00    | 15.00   | 6.00    | 8.00  | 8.00     |

Figure 14-6: Cumulative Histogram of the Sample Interval Lengths analyzed within the Estimation Domains. Intervals that were not sampled or had insufficient recovery are not considered.

#### 14.5.4 Orphan Analysis

Composites that do not reach their maximum allowed length are called orphans. Orphans are created during the truncation processes at contacts, as described in Section 14.5.3, or when a drill hole ends

before the last composite reaches its full length. Considering all the orphans during the estimation process may introduce a bias. Therefore, gold's distribution was examined with and without orphans to determine if they should be deemed equivalent in importance to the full-length composite's estimation process. Three configurations are examined for this analysis:

- Composites that are 10 ft in length without any orphans;
- Composites and orphans greater than or equal to 5 ft in length; and
- All composites and orphans.

It is common to observe a decrease in the mean when comparing the composite values to the original raw assay statistics. This decrease in the mean is typical as large un-sampled intervals (that are assigned a nominal waste value, as discussed in Section 14.2.2) are split into multiple smaller intervals. Also, by not snapping truncating contacts of the estimation domain wireframes to the start or end of raw sample intervals, many orphans can be created that are redundant data that are not representative that may skew the resource estimate. However, the boundaries of the estimation domains constructed occur at the start or end of raw sample intervals, which will reduce the number of orphan samples significantly.

An orphan analysis was completed for all gold assays contained within the estimation domains. Figure 14-7 illustrates an example of the difference between the distribution of composited metal grade with the various composite length scenarios for the Banshee estimation domain. When comparing only the composites equal to 10 ft to all composites, including the orphans, gold assays illustrate a mean change of  $\pm 1.85\%$  when orphans are considered (Table 14-4). The 769 orphans that are  $\geq 5$  ft in length are used when calculating the MRE. However, the six orphans that are  $\leq 5$  ft in length are not used to calculate the MRE as they are considered redundant.

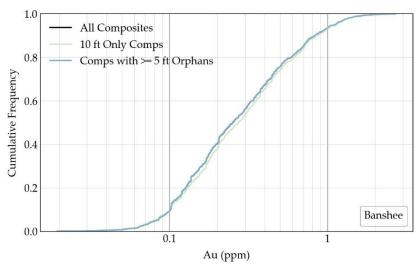
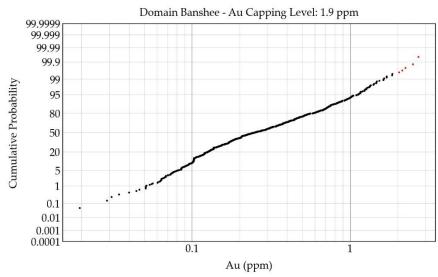



Figure 14-7: Example of Orphan Analysis Comparing Cumulative Histograms of Raw Assays and Uncapped Composites with and without Orphans Contained within the Banshee Estimation Domain

Table 14-4: Orphan Analysis Comparing the Gold Statistics (in ppm) of Raw Assays and Uncapped Composite Samples with and without Orphans

|       | Raw Assays | Comps with Orphans | Comps 10 ft Only | Comps ≥ 5 ft Orphans |  |
|-------|------------|--------------------|------------------|----------------------|--|
| count | 37,588     | 19,306             | 18,105           | 19,265               |  |
| mean  | 0.44       | 0.43               | 0.45             | 0.43                 |  |
| std   | 0.55       | 0.50               | 0.50             | 0.50                 |  |
| var   | 0.31       | 0.25               | 0.26             | 0.25                 |  |
| CV    | 1.26       | 1.15               | 1.13             | 1.15                 |  |
| min   | 0.00       | 0.00               | 0.00             | 0.00                 |  |
| 25%   | 0.14       | 0.15               | 0.16             | 0.15                 |  |
| 50%   | 0.27       | 0.27               | 0.29             | 0.27                 |  |
| 75%   | 0.53       | 0.52               | 0.54             | 0.52                 |  |
| max   | 20.55      | 11.47              | 11.47            | 11.47                |  |


Source: APEX, 2022

# 14.5.5 **Capping**

To ensure gold grades are not overestimated by including outlier values during estimation, composites are capped to a specified maximum value. Probability plots illustrating each composite's values are used to identify outlier values that appear higher than expected relative to each estimation domain's gold distribution. Composites identified as potential outliers on the probability plots are evaluated in 3D to determine if they are part of a high-grade trend or not. If identified outliers are deemed part of a high-grade

trend that still requires a capping level, the level used on them may not be as aggressive as the capping level used to control isolated high-grade outliers.

Probability plots of composited values were created for all domains for the indicated capping levels detailed in Table 14-5. The Banshee domain is again provided as an example (Figure 14-8). Visual inspection of the potential outliers (points shown in red in Figure 14-8) revealed they have no spatial continuity with each other. Therefore, the capping levels detailed in Table 14-5 (1.9 ppm Au for Banshee) are applied to composites used to calculate the MRE.



Source: APEX, 2022

Figure 14-8: Example of a Probability Plot of the Composited Gold Values Before Capping for Banshee. Capped Values are Highlighted in Red

Table 14-5: Capping Levels Applied to Composites Before Gold Estimation

| Estimation Domain | Au Capping Level (ppm) |
|-------------------|------------------------|
| Banshee           | 1.9                    |
| Black Stallion    | 2.6                    |
| Campbell          | 1.4                    |
| Dune              | 1.25                   |
| Dynamite          | 2.42                   |
| Mustang           | 1                      |
| Pan North         | 6.5                    |
| Redhill           | 4.2                    |
| Pan South East    | 4                      |
| Pan South West    | 3.6                    |
| Syncline          | 3                      |

# 14.5.6 Declustering

It is typical to collect data in a manner that preferentially samples high valued areas over low-value areas. This preferential sampling is an acceptable practice; however, it produces closely spaced measurements that are likely statistically redundant, which results in under-represented sparse data compared to the closer-spaced data. Therefore, it is desirable to have spatially representative (i.e. declustered) statistics for global resource assessment and to check estimated models. Declustering techniques calculate a weight for each datum that results in sparse data having a higher weight than closely spaced data. The calculated declustering weights allow spatially repetitive summary statistics to be calculated, such as a declustered mean.

Cell declustering is performed globally on all composites within the estimation domains, which calculates a declustering weight for each composite. Cell declustering works by discretizing a 3D volume into cells that are the same size. The sum of the weights of all the composites within the cell must equal 1. Therefore, the weight assigned to each composite is proportional to the number of composites within each cell. For example, if there are four composites within a cell, they are all assigned a declustering weight of 0.25.

As a general rule, the cell size used to calculate declustering weights will ideally contain one composite per cell in the sparsely sampled areas. Visual evaluation of the sparsely sampled areas in a 3D visualization software gives a rough idea of this size. Additionally, a high-resolution block model populated with the distance to each block nearest composite can help guide the declustering of the cell size. The 90-percentile of the distance block model, with a cell size much lower than the final declustering cell size, approximates the optimal cell size. Finally, plotting a series of declustered means for a range of declustering cell sizes will help determine the optimal cell size. The optimal cell size will likely be when the declustered mean in the plot is locally low or high at a cell size that is very close to the two potential cell sizes that were determined from the visual review and calculated 90-percentile distance. Preferential sampling in high-grade zones results in a declustered mean that is likely within a local minimum. In contrast, preferential sampling in low-grade zones results in a declustered mean that is expected within a local maximum.

Declustering weights were calculated for each estimation domain separately. Visual evaluation of the sparsely sampled areas in Micromine suggests similar cell sizes as the 90-percentiles from the distance block model for each estimation domain. Plots comprised of a series of declustered means for a range of declustering cell sizes were used to inform the final cell sizes. Table 14-6 details the cell sizes used, and all were very close to the size indicated by the visual evaluation and distance block model.

Table 14-6: Cell Sizes Used to Calculate Declustering Weight in each Estimation Domain

| Estimation Domain | Cell Declustering Size (ft) |
|-------------------|-----------------------------|
| Banshee           | 45                          |
| Black Stallion    | 40                          |
| Campbell          | 80                          |
| Dune              | 60                          |
| Dynamite          | 50                          |
| Mustang           | 100                         |
| Pan North         | 63                          |
| Redhill           | 57                          |
| Pan South         | 67                          |
| Syncline          | 46                          |

# 14.5.7 Final Composite Statistics

Cumulative histograms and summary statistics for the declustered and capped composites contained within the interpreted estimation domains, without orphans < 5 ft, are tabulated in Table 14-7. An example cumulative histogram is presented for the Banshee Domain showing clustered vs declustered composites in Figure 14-9. The gold assays within each domain generally exhibit a single statistical population.



Figure 14-9: Cumulative Histogram of Gold for the Banshee Domain Comparing Clustered and Declustered Composites

Declustered

n = 1033

m = 0.3431

 $\tilde{x} = 0.218$ 

 $\sigma = 0.3161$ 

 $x_{max} = 1.9$ 

CV = 0.9214

 $x_{75} = 0.4439$ 

 $\begin{aligned} x_{25} &= 0.131 \\ x_{min} &= 0.0195 \end{aligned}$ 

Table 14-7: Summary Statistics from Composites Contained within the Estimation Domains that have been Declustered and Capped, with the < 1.5 m Orphans Removed

|       | Olahai | Danahaa | Black    | 0        | Down  | D        | Montana | Pan   | D. allaill | O-malina | Sou   | ıth   |
|-------|--------|---------|----------|----------|-------|----------|---------|-------|------------|----------|-------|-------|
|       | Global | Banshee | Stallion | Campbell | Dune  | Dynamite | Mustang | North | Redhill    | Syncline | East  | West  |
| count | 25,951 | 1,033   | 1,000    | 710      | 1,662 | 674      | 191     | 5,957 | 1,013      | 339      | 8,068 | 5,304 |
| mean  | 0.36   | 0.34    | 0.43     | 0.21     | 0.30  | 0.31     | 0.39    | 0.37  | 0.45       | 0.42     | 0.33  | 0.39  |
| std   | 0.40   | 0.32    | 0.46     | 0.18     | 0.30  | 0.27     | 0.30    | 0.40  | 0.59       | 0.49     | 0.39  | 0.44  |
| var   | 0.16   | 0.10    | 0.21     | 0.03     | 0.09  | 0.07     | 0.09    | 0.16  | 0.34       | 0.24     | 0.15  | 0.20  |
| CV    | 1.12   | 0.92    | 1.07     | 0.83     | 0.99  | 0.85     | 0.77    | 1.07  | 1.29       | 1.18     | 1.16  | 1.13  |
| min   | 0.00   | 0.02    | 0.01     | 0.03     | 0.00  | 0.00     | 0.04    | 0.00  | 0.03       | 0.03     | 0.00  | 0.00  |
| 25%   | 0.14   | 0.13    | 0.14     | 0.11     | 0.12  | 0.13     | 0.15    | 0.15  | 0.14       | 0.14     | 0.13  | 0.14  |
| 50%   | 0.22   | 0.22    | 0.26     | 0.16     | 0.21  | 0.21     | 0.27    | 0.26  | 0.22       | 0.25     | 0.21  | 0.24  |
| 75%   | 0.42   | 0.44    | 0.51     | 0.24     | 0.37  | 0.41     | 0.56    | 0.45  | 0.55       | 0.47     | 0.38  | 0.47  |
| max   | 6.50   | 1.90    | 2.60     | 1.25     | 2.42  | 1.40     | 1.00    | 6.50  | 4.20       | 3.00     | 4.00  | 3.60  |

# 14.5.8 Variography and Grade Continuity

The experimental semi-variograms, example shown in Figure 14-10, for each domain are calculated along the major, minor, and vertical principal directions of continuity that are defined by three Euler angles. Euler angles describe the orientation of anisotropy as a series of rotations (using a left-hand rule) that are as follows:

- Angle 1: A rotation about the Z-axis (azimuth) with positive angles being clockwise rotation and negative representing counter-clockwise rotation;
- Angle 2: A rotation about the X-axis (dip) with positive angles being counter-clockwise rotation and negative representing clockwise rotation; and
- Angle 3: A rotation about the Y-axis (tilt) with positive angles being clockwise rotation and negative representing counter-clockwise rotation.

Using the correlogram algorithm, gold experimental variograms were calculated using the composites for each estimation domain. The Banshee domain is provided as an example in Figure 14-10. Table 14-8 details the final variogram model parameters used by Kriging for all the domains. As described in Section 14.7, gold estimation uses LVA that defines the variogram's orientation on a per-block basis. The three Euler angles described in Table 14-8 are not used during estimation, only to calculate the experimental variogram.

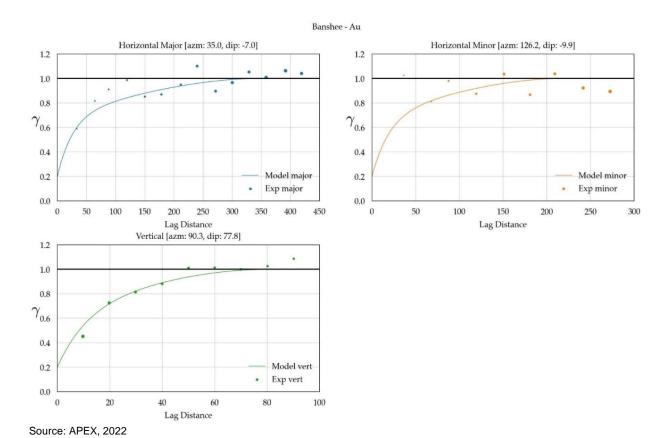



Figure 14-10: Example of Standardized Gold Experimental and Modelled Semi-variogram for Banshee Estimation Domain that can Produce Representative Variograms

Table 14-8: Parameters of the Modelled Gold Variograms from each Estimation Domain

|                | Euler Angles |     |     |      | Structure 1 |      |      |       |             | Structure 2 |      |      |             |       |          |
|----------------|--------------|-----|-----|------|-------------|------|------|-------|-------------|-------------|------|------|-------------|-------|----------|
| Zone           | 4 0          | 2   | 3   | Sill | Sill C0     | Tuno | C1   |       | Ranges (ft) |             | Type | C2   | Ranges (ft) |       |          |
|                | '            | 2   | 3   |      |             | Type | Ci   | Major | Minor       | Vertical    | Type | 62   | Major       | Minor | Vertical |
| Black Stallion | 190          | -5  | 16  | 0.25 | 0.05        | exp  | 0.17 | 70    | 70          | 40          | sph  | 0.02 | 250         | 70    | 40       |
| Mustang        | 190          | -5  | 16  | 0.10 | 0.02        | exp  | 0.07 | 70    | 70          | 40          | sph  | 0.01 | 250         | 70    | 40       |
| Banshee        | 35           | -7  | 10  | 0.11 | 0.02        | exp  | 0.06 | 80    | 60          | 35          | sph  | 0.03 | 350         | 220   | 80       |
| Campbell       | 119          | -5  | -51 | 0.08 | 0.02        | exp  | 0.04 | 100   | 60          | 35          | sph  | 0.03 | 300         | 180   | 80       |
| Dune           | 180          | -13 | 0   | 0.03 | 0.01        | exp  | 0.02 | 50    | 50          | 45          | sph  | 0.01 | 200         | 60    | 45       |
| Pan North      | 343          | -34 | -54 | 0.22 | 0.04        | exp  | 0.12 | 120   | 65          | 12          | sph  | 0.05 | 250         | 200   | 30       |
| Redhill        | 115          | -29 | -10 | 0.53 | 0.11        | exp  | 0.26 | 220   | 180         | 60          | sph  | 0.16 | 250         | 180   | 60       |
| Syncline       | 330          | -10 | -16 | 0.33 | 0.07        | exp  | 0.20 | 150   | 100         | 65          | sph  | 0.07 | 150         | 100   | 65       |
| Dynamite       | 0            | -20 | 80  | 0.10 | 0.02        | exp  | 0.05 | 120   | 100         | 45          | sph  | 0.03 | 300         | 120   | 60       |
| Pan South East | 5            | -30 | 35  | 0.20 | 0.04        | exp  | 0.12 | 70    | 55          | 80          | sph  | 0.04 | 350         | 120   | 80       |
| Pan South West | 350          | -20 | -70 | 0.28 | 0.09        | ехр  | 0.14 | 90    | 90          | 35          | sph  | 0.06 | 320         | 150   | 90       |

Abbreviations - sph - spherical, exp - exponential; C0 - nugget effect; C1 - covariance contribution of structure 1; C2 - covariance contribution of structure 2; na - not available

# 14.5.9 Contact Analysis

The mineralization profile at the contact between different estimation domains can occur in a soft, hard, or semi-soft manner. Soft boundaries occur when mineralization at the contact gradually changes from high to low as you cross into the neighboring domain. Hard boundaries occur when mineralization at the contact abruptly changes as you cross into the neighboring domain. Semi-soft boundaries occur when mineralization changes gradually within a small window as you cross into the neighboring domain. If possible, the final block model should reproduce the mineralization profile observed in the drill hole data at contacts between estimation domains. A contact analysis was completed to evaluate the mineralization profile at each estimation domain contact using plots of grade as a function of distance to the contact to determine the type of mineralization profile (Figure 14-11).

There are few instances of domains contacting each other, when they do, the boundary is either artificially created for modelling purposes (e.g., Banshee-Red Hill contact) or is the merging point of two mineralized zones that resulted from the same geological processes (e.g., South Pan West-South Pan East contact). Therefore, it is not anticipated that there would be any instances of soft or semi-soft boundaries. Contact analysis of all the domain-domain contacts illustrated only hard boundaries (Figure 14-11). Therefore, the estimation of blocks within an estimation domain that is contact with another don't consider or utilize the composites within the adjacent estimation domain.

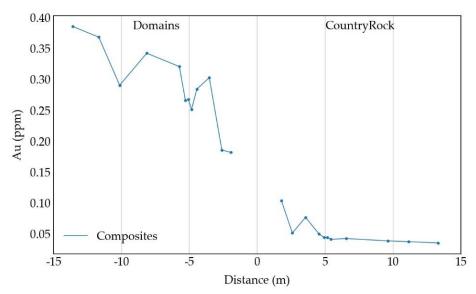



Figure 14-11: Contact Analysis of Gold Grade at the Boundary between the Pan Mine Mineralized Estimation Domain and Waste

### 14.6 Pan Block Model

### 14.6.1 Block Model Parameters

The block model used for the calculation of the Pan Mine MRE fully encapsulates the estimation domains used for resource estimation described in Sections 14.3 and 14.4. A block size of 20 ft by 20 ft by 20 ft is used. The coordinate ranges and block size dimensions used to build the Pan 3D block model are presented in Table 14-9.

A block factor (BF) representing the percentage of each block's volume that lies within each estimation domain was calculated and used to:

- flag what the estimation domain is for each block;
- calculate the volume of mineralized material and waste for each block; and
- calculate the tons of mineralized material of each block when calculating the MRE.

Table 14-9: Pan 3D Block Model Size and Extents

| Axis          | Number of Blocks | Block Size (ft) | Minimum Extent (ft) | Maximum Extent (ft) |  |
|---------------|------------------|-----------------|---------------------|---------------------|--|
| X (Easting)   | 281              | 281 20          |                     | 1999630             |  |
| Y (Northing)  | ing) 743 20      |                 | 14269330            | 14284170            |  |
| Z (Elevation) | levation) 67     |                 | 5730                | 7050                |  |

Source: APEX, 2022

#### 14.6.2 Volumetric Checks

A comparison of estimation domain wireframe volumes versus block model volumes illustrates there is no considerable over- or under-stating of tonnages (Table 14-10). The calculated block factor for each block is used to scale its volume when calculating the block model's total volume within each estimation domain.

Table 14-10: Estimation Domain Wireframe Versus Block-model Volume Comparison

| <b>Estimation Domain</b> | Wireframe Volume (ft³) | Block Model Volume with Block Factor (ft <sup>3</sup> ) | Volume Difference (%) |  |
|--------------------------|------------------------|---------------------------------------------------------|-----------------------|--|
| Banshee                  | 68,292,416             | 68,297,366                                              | -0.01%                |  |
| Black Stallion           | 40,991,936             | 41,017,218                                              | -0.06%                |  |
| Campbell                 | 50,433,920             | 50,419,718                                              | 0.03%                 |  |
| Dune                     | 53,254,272             | 53,238,432                                              | 0.03%                 |  |
| Dynamite                 | 198,986,176            | 201,765,177                                             | -1.38%                |  |
| Mustang                  | 14,684,288             | 14,694,112                                              | -0.07%                |  |
| Pan North                | 427,961,920            | 427,939,003                                             | 0.01%                 |  |
| Redhill                  | 46,338,432             | 46,329,481                                              | 0.02%                 |  |
| South Pan (East)         | 415,639,232            | 415,643,935                                             | 0.00%                 |  |
| South Pan (West)         | 251,263,744            | 251,249,603                                             | 0.01%                 |  |
| Total                    | 1,592,052,544          | 1,594,801,865                                           | -0.172%               |  |

# 14.7 Grade Estimation Methodology

Ordinary Kriging (OK) was used to estimate gold grades for the Pan block model. Grade estimates are only calculated for blocks that contain more than 0.8% mineralized material by volume.

Estimation of blocks is completed with LVA, which uses different rotation angles to define the principal directions of the variogram model and search ellipsoid on a per-block basis. Blocks within the estimation domain are assigned rotation angles using a trend surface wireframe. This method allows structural complexities to be reproduced in the estimated block model. Variogram and search ranges are defined by the variogram model described in Section 14.5.8.

To ensure that all blocks within the estimation domains are estimated, a three-pass estimation method was used for each domain that utilizes three different variogram model and search ellipsoid configurations (Table 14-11). The ranges of the first and second estimation passes are typically informed by the variogram structure ranges; however, they are adjusted as required to ensure the correct amount of smoothing is achieved. The range of the first variogram structure never changes, while each subsequent run extends the range of the second structure as needed. The search ellipsoid distances are always defined by the range of the variogram's second structure. The second and third passes are required because of structural complexities in a couple of the domains geometry in particular due to folding. The search ellipsoid of the first pass is not able to look along bends paralleling the trends of folds, so second and third passes are completed as needed.

Volume-variance corrections are enforced by restricting the maximum number of conditioning data to 20 and the maximum number of composites from each drill hole to 2 to 4. These restrictions are implemented to ensure the estimated models are not over smoothed, which would lead to inaccurate estimation of global tonnage and grade. These corrections cause local conditional bias but ensure the global estimate of grade and tons is accurately estimated.

Blocks that contain more than or equal to 0.8% waste by volume are diluted by estimating a waste gold value that is volume-weight averaged with the estimated gold grade. It is desired that the behavior of gold at the boundary between the estimation domain and waste beyond its boundary is reproduced. The nature of gold mineralization at the mineralized/waste contact is evaluated and used to determine a window to flag composites that are used to condition a waste gold estimate for blocks containing waste material. As illustrated in Figure 14-11, gold behaves in a semi-soft manner, where the grade of the composite centroids flagged within an estimation domain transitions from mineralized to waste over a short window. Composites within a window of 20 ft into waste and at the domain boundary are used to estimate a waste gold value.

Table 14-11: Gold Grade Estimation Search and Kriging Parameters

| Domain              | Estimation |       | Search Ra | nge      | Min No. | Max Comps | Min No. | Max No. |
|---------------------|------------|-------|-----------|----------|---------|-----------|---------|---------|
| Domain              | Pass       | Major | Minor     | Vertical | Holes   | Per Hole  | Comps   | Comps   |
| Donahaa             | 1          | 80    | 60        | 35       | 1       | 3         | 3       | 20      |
| Banshee             | 2          | 350   | 220       | 80       | 1       | 3         | 1       | 20      |
| Black Stallion      | 1          | 70    | 70        | 40       | 1       | 2         | 2       | 20      |
| Black Stallion      | 2          | 250   | 70        | 40       | 1       | 2         | 1       | 20      |
| Campbell            | 1          | 100   | 60        | 35       | 1       | 3         | 3       | 20      |
| Campbell            | 2          | 300   | 180       | 80       | 1       | 3         | 1       | 20      |
| Dune                | 1          | 200   | 60        | 45       | 1       | 3         | 1       | 20      |
| Dynamita            | 1          | 120   | 100       | 45       | 1       | 2         | 2       | 20      |
| Dynamite            | 2          | 300   | 120       | 60       | 1       | 2         | 1       | 20      |
| Mustang             | 1          | 250   | 70        | 40       | 1       | 4         | 1       | 20      |
|                     | 1          | 120   | 65        | 12       | 1       | 4         | 3       | 20      |
| North Pan           | 2          | 250   | 200       | 30       | 1       | 4         | 3       | 20      |
|                     | 3          | 325   | 300       | 45       | 1       | 4         | 1       | 20      |
| Redhill             | 1          | 250   | 180       | 60       | 1       | 3         | 1       | 20      |
|                     | 1          | 70    | 55        | 10       | 1       | 3         | 3       | 20      |
| South Pan<br>(East) | 2          | 70    | 55        | 50       | 1       | 4         | 3       | 20      |
|                     | 3          | 350   | 120       | 80       | 1       | 4         | 1       | 20      |
|                     | 1          | 90    | 90        | 10       | 1       | 4         | 1       | 20      |
| South Pan<br>(West) | 2          | 90    | 90        | 35       | 1       | 4         | 3       | 20      |
| (55.)               | 3          | 320   | 150       | 80       | 1       | 4         | 1       | 20      |
| Synalina            | 1          | 150   | 100       | 15       | 1       | 3         | 2       | 20      |
| Syncline            | 2          | 150   | 100       | 65       | 1       | 3         | 1       | 20      |

### 14.8 Model Validation

A visual and statistical validation was completed to ensure that the estimated block model honors directional trends observed in the composites and that the block model is not over-smoothed or over- or under-estimated.

### 14.8.1 Visual Validation

The block model was visually validated in plan view and in cross-section to compare the estimated gold values versus the conditioning composites. Overall, the model compares well with the composites. There is some local over- and under-estimation observed. Due to the limited number of conditioning data available for the estimation in those areas, this is the expected result. As illustrated in Figure 14-12 and Figure 14-13, overall, the estimated block values compare well with composite gold values illustrated along the drill hole traces.

### 14.8.2 Statistical Validation

#### Swath Plots

Swath plots verify that the estimated block model honors directional trends and identifies potential areas of over- or under-estimation. They are generated by calculating the average metal grades of composites and estimated block models within directional slices. A window of 100 ft is used in east-west slices, 100 ft in north-south slices, and 300 ft in vertical slices.

Swath plots for gold estimates in all of the estimation domains were created and checked and are illustrated using Banshee as an example in Figure 14-14. Average composite grades are compared to OK block model grades and Inverse Distance (IDW) block model grades (provided as a check for the OK estimation model). The volume of conditioning data utilized is provided as histogram bars in the swath plots. There are minor instances of localized over- and under-estimation; however, it is believed to be a product of a lack of conditioning data in those areas and the smoothing effect of kriging. Overall, the block model adequately reproduces the trends observed in the composites in all three directions for all of the domains.

### **Volume-Variance Validation**

Smoothing is an intrinsic property of Kriging, and as described in Section 14.7 volume-variance corrections are used to help reduce its effects. To verify that the correct level of smoothing is achieved, theoretical histograms based on the composite data that indicate each estimated metal's anticipated variance and distribution at the selected block model size are calculated and plotted against the estimated final block model distribution in Figure 14-15. The actual block model variance and distribution fits closely to the calculated theoretical histograms. Smoothing is observed versus the composite data, which is considered normal; however, further modifications of the search strategy to help control the smoothing will degrade the quality of the gold estimates.

### **Contact Analysis Reproduction**

As described in Section 14.7, blocks within the Pan Mine block model that contain more than or equal to 0.8% waste by volume are diluted using the estimated waste gold and mineralized zone gold values. Ideally, the nature of gold mineralization at the mineralization/waste contact observed in the composites is reproduced in the block model. A contact analysis plot checking contact profile reproduction is illustrated in Figure 14-16. The mineralization/waste contact profile is adequately reproduced with some overestimation into waste and under-estimation into the mineralized domain.

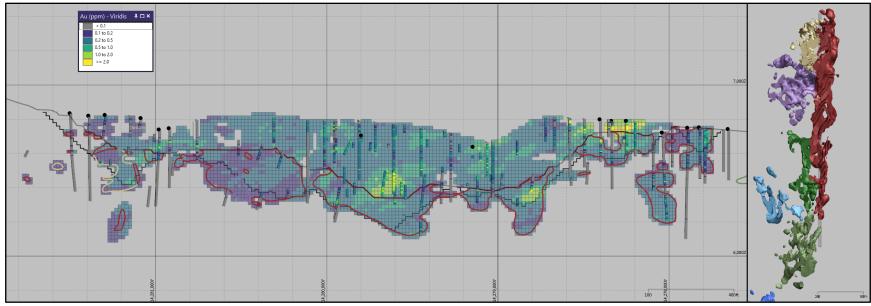



Figure 14-12: Cross (Long)-section Looking East along 1998960E Illustrating the Estimated Au Values in the Block Model, the Estimation Domains (red line) and the \$1700 Au Resource Pit Shell (thick black line)

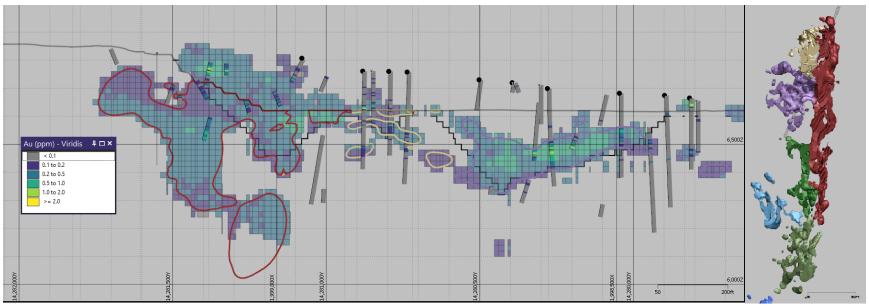



Figure 14-13: Oblique Cross (Long)-section Looking Southeast Illustrating the Estimated Au Values in the Block Model, the Estimation Domains (red line) and the \$1700 Au Resource Pit Shell (thick black line)

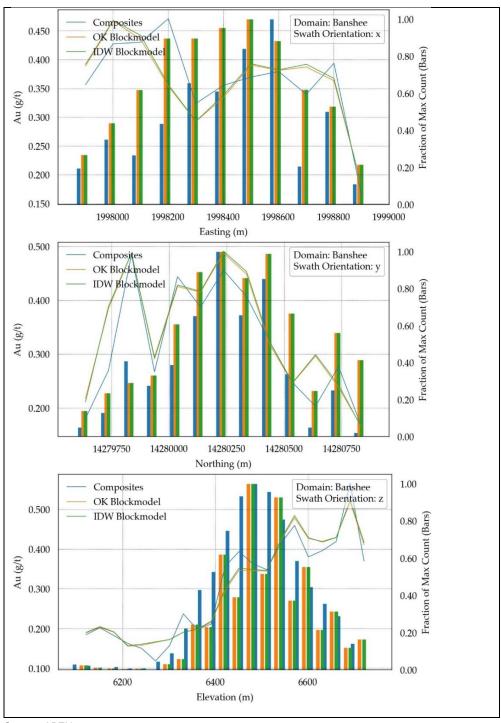



Figure 14-14: Example Swath Plots Comparing Composite Gold Values Versus the Estimated Block Model Gold Values for the Banshee estimation domain

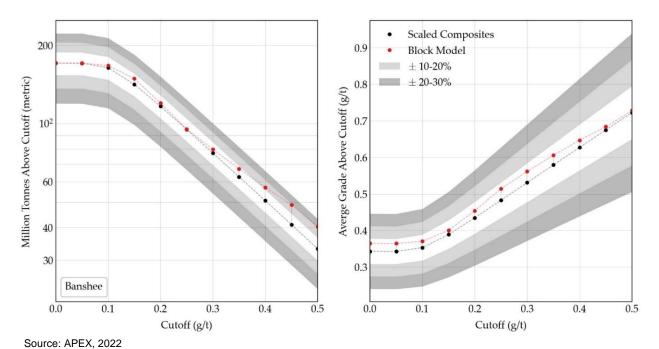



Figure 14-15: Example Illustrating Volume Variance Check of the Block Model's Estimated Gold Grades within the Banshee Estimation Domain

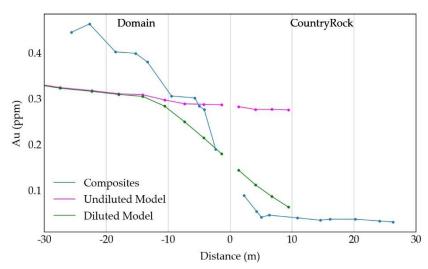



Figure 14-16: Contact Analysis of Comparison between Input Composites, Diluted and Undiluted Block Models Gold Grade at the Boundary of the Estimation Domain and Waste

# 14.9 Mineral Resource Classification

The Pan Mine MRE discussed in this report has been classified in accordance with guidelines established by the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019 and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated May 14th, 2014.

A Measured Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are estimated with confidence sufficient to allow the application of Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit. Geological evidence is derived from detailed and reliable exploration, sampling and testing and is sufficient to confirm geological and grade or quality continuity between points of observation. A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proven Mineral Reserve or to a Probable Mineral Reserve.

An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit. Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation. An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

The 2022 Pan Mine MRE Update is classified as a Measured, Indicated and Inferred Resource according to the above CIM definition standards. The classification of the Pan Mine Measured, Indicated and Inferred Resource was based on geological confidence, data quality and grade continuity. The most relevant factors used in the classification process were:

- density of conditioning data;
- level of confidence in historical drilling results and collar locations;
- level of confidence in the geological interpretation; and
- continuity of mineralization.

Resource classification was determined using a multiple-pass strategy that consists of a sequence of runs that flag each block with the run number a block first meets a set of search restrictions. With each subsequent pass, the search restrictions are decreased, representing a decrease in confidence and

classification from the previous run. For each run, a search ellipsoid is centered on each block and orientated in the same way described in Section 14.7. For each run, Table 14-12 details the range of the search ellipsoid and the number of composites that must be found within the ellipse for a block to be flagged with that run number. The runs are executed in sequence from run 1 to run 3. Classification is then determined by relating the run number that each block is flagged as to measured (run 1), indicated (run 2), or inferred (run 3). Also, any blocks that were not classified during classification-passes 2 or 3 are only classified as Inferred.

Table 14-12: Search Restrictions Applied During Each Run of the Multiple-pass Classification Strategy

| Run No. | Classification | Min No.<br>Holes | Min No.<br>Comp | Major<br>Range | Minor<br>Range | Vertical<br>Range |
|---------|----------------|------------------|-----------------|----------------|----------------|-------------------|
| Run 1   | Measured       | 5                | 30              | 175            | 115            | 25                |
| Run 2   | Indicated      | 4                | 15              | 300            | 200            | 30                |
| Run 3   | Inferred       | 1                | 1               | -              | -              | -                 |

Source: APEX, 2022

# 14.10 Evaluation of Reasonable Prospects for Eventual Economic Extraction

In order to demonstrate that the Pan Mine MRE has the potential for future economic extraction, the unconstrained resource block model was subjected to several pit optimization scenarios to look at the prospect for eventual economic extraction. Pit optimization was performed in Micromine using the industry standard Lerchs-Grossmann algorithm (LG). The criteria used in the LG pit optimizer were considered reasonable for Nevada heap leach deposits including ongoing mining costs at the Pan Mine. All Mineral Resources reported below are reported within an optimized pit shell using \$US1,700/oz for gold and was defined using blocks classified as Measured, Indicated, or Inferred. The criteria used for the \$1,700/oz pit shell optimization are shown in Table 14-13. A variable lower gold grade cutoff and recovery is used based on the overprinting alteration. Blocks flagged as argillic altered or as unaltered utilized a lower cutoff of 0.003 oz/ton Au (0.10 g/t) and 80% recovery and blocks flagged as silicic altered utilized a grade cutoff of 0.004 oz/ton Au (0.14 g/t) and 60% recovery. This estimate was adjusted following the mine planning results to include additional material captured when detailed mine designs were captured.

Mr. Dufresne considers the LG pit parameters (Table 14-13) appropriate to evaluate the reasonable prospect for future economic extraction at the Pan Mine for the purpose of providing a MRE. The resources presented herein are not Mineral Reserves, and they do not have demonstrated economic viability. There is no guarantee that any part of the resources identified herein will be converted to Mineral Reserves in the future.

Table 14-13: Parameters for Lerchs-Grossman Pit optimization for Mineral Resource Estimate

| Parameter         | Unit           | Cost                                        |  |  |
|-------------------|----------------|---------------------------------------------|--|--|
| Gold price        | \$US/ounce     | 1,700                                       |  |  |
| Gold recovery     | %              | Argillic – 80; Silicic – 60; Unaltered – 80 |  |  |
| Pit wall angles   | degrees        | Limestone – 50; Default - 45                |  |  |
| Ore Mining Cost   | US\$/ton       | 2.09                                        |  |  |
| Waste Mining Cost | US\$/ton       | 1.97                                        |  |  |
| Ore Density       | cubic feet/ton | Variable (see Section 14.4.1)               |  |  |
| Waste Density     | cubic feet/ton | Variable (see Section 14.4.1)               |  |  |
| Processing Cost   | US\$/ton ore   | 2.4                                         |  |  |
| G & A Cost        | US\$/ton ore   | 0.73                                        |  |  |
| Royalty           | percent        | 0                                           |  |  |

# 14.11 Mineral Resource Reporting

The Pan Mine updated MRE is reported in accordance with the CSA NI 43-101 rules for disclosure and has been estimated using the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019 and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated May 10th, 2014.

The MRE was estimated within 3D solids that were created from a combined implicit model and cross-sectional lode interpretation of geology and alteration. The upper contact has been cut by the topographic surface as of September 30, 2022. The model was then depleted further using the December 31, 2022 topographic surface validated against production for October to December 2022. There is little to no surficial overburden present at the Pan Mine. Grade was estimated into a block model with a block size of 20 ft (X) by 20 ft (Y) by 20 ft (Z).

Grade estimation of gold was performed using Ordinary Kriging (OK). For the purposes of the pit shell optimization and the reported MRE below, blocks that contain waste were diluted by estimating a waste value using composites within a transition zone along the outer boundary of the estimation domains. The final diluted gold grade for the diluted model assigned to each block is a volume-weighted average of the estimated gold and waste grade values. The MRE is reported within that pit shell and is reported as edge diluted but not mining diluted.

The updated Pan Mine MRE is reported at various cutoffs depending on what type of alteration each block is flagged as. The Measured, Indicated, and Inferred MRE is partially diluted, constrained within an optimized pit shell, and includes a Measured and Indicated Mineral Resource of 37.04 million tons (33.8 million tonnes) at 0.010 oz/ton (0.33 g/t) Au for 358,900 ounces of gold and an Inferred Mineral Resource of 3.58 million tons (3.25 million tonnes) at 0.012 oz/ton (0.40 g/t) Au for 42,000 ounces of gold (Table 14-14). The reported MRE utilizes a lower gold cutoff of 0.003 oz/ton Au (0.10 g/t) for blocks flagged as argillic altered or as unaltered and a cutoff of 0.004 oz/ton Au (0.14 g/t) for blocks flagged as silicic altered.

The Pan Mine MRE is presented versus alteration and recovery type in Table 14-15. Other cut-off grades are presented in Table 14-16 for review ranging from 0.003 oz/ton (0.10 g/t) Au to 0.012 oz/ton (0.4 g/t) Au for sensitivity analyses. The sensitivity analysis does not use variable cutoffs for each style of mineralization. Examples of the block model constrained within the resource pit shell are illustrated in Figure 14-12 and Figure 14-13.

The updated MRE shows a 16% decrease (68,500 gold ounces) in Measured and Indicated Resources to 358,900 gold ounces versus the 2020 MRE that utilized a June 30, 2020 topographic surface (Smith et al., 2021). The approximate calculated mining depletion for the period of June 30, 2020 to December 31, 2022 is a little over 13 million tons and about 170,000 oz Au, the vast majority of which were Measured and Indicated Resources from the 2020 MRE. The 2021 to 2022 drilling has effectively resulted in the addition of Measured and Indicated Resources equivalent to approximately 100,000 gold ounces versus the 170,000 gold ounces that have been mined in the period from June 30, 2020 to December 31, 2022. An additional Inferred Resource of 42,000 gold ounces has been estimated at the Pan Mine, that with continued drilling may provide additional Measured and/or Indicated gold ounces.

The 2022 Pan Mine MRE has been classified as comprising Measured, Indicated, and Inferred Resources according to recent CIM definition standards. The classification of the Pan Mine resources was based on geological confidence, data quality and grade continuity. All reported Mineral Resources occur within a pit shell optimized using values of US\$1,700 per ounce for gold. Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability. The MRE is partially (domain edge) diluted and is inclusive of Reserves.

Table 14-14: Pan Mine Edge-diluted Resource Estimate Constrained within the '\$1700/oz' Pit Shell for Gold Specific to Area (effective date of December 31, 2022)

| Region  | Classification | Tons (tons)* | Tonnes (tonnes)* | Au Grade<br>(oz/ton) | Au Grade<br>(g/t) | Contained Au (troy ounces)* |
|---------|----------------|--------------|------------------|----------------------|-------------------|-----------------------------|
|         | Measured*      | 3,000        | 2,000            | 0.012                | 0.41              | 0                           |
| Nauth   | Indicated*     | 11,470,000   | 10,405,000       | 0.010                | 0.34              | 113,400                     |
| North   | M&I*           | 11,472,000   | 10,408,000       | 0.010                | 0.34              | 113,500                     |
|         | Inferred*      | 709,000      | 643,000          | 0.013                | 0.44              | 9,100                       |
|         | Measured*      | 32,000       | 29,000           | 0.020                | 0.57              | 500                         |
| Control | Indicated*     | 6,396,000    | 5,803,000        | 0.010                | 0.33              | 62,400                      |
| Central | M&I*           | 6,428,000    | 5,831,000        | 0.010                | 0.34              | 62,900                      |
|         | Inferred*      | 442,000      | 401,000          | 0.010                | 0.36              | 4,700                       |
|         | Measured*      | 10,000       | 9,000            | 0.017                | 0.57              | 100                         |
| South   | Indicated*     | 19,337,000   | 17,542,000       | 0.010                | 0.33              | 182,300                     |
| South   | M&I*           | 19,347,000   | 17,551,000       | 0.010                | 0.33              | 182,500                     |
|         | Inferred*      | 2,427,000    | 2,202,000        | 0.012                | 0.40              | 28,200                      |
|         | Measured*      | 44,000       | 40,000           | 0.016                | 0.55              | 700                         |
| Total   | Indicated*     | 37,203,000   | 33,750,000       | 0.010                | 0.33              | 358,200                     |
| างเลเ   | M&I*           | 37,247,000   | 33,790,000       | 0.010                | 0.33              | 358,900                     |
|         | Inferred*      | 3,578,000    | 3,246,000        | 0.012                | 0.40              | 42,000                      |

#### \*Notes:

<sup>1</sup> CIM (2014, 2019) guidelines, standards and definitions were followed for estimation and classification of mineral resources.

<sup>&</sup>lt;sup>2</sup> The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues.

<sup>&</sup>lt;sup>3.</sup> Resources are stated as contained within a constrained pit shell; pit optimization was based on an assumed gold price of US\$1,700/oz, Silicic (hard) ore recoveries of 60% for Au and an Argillic (soft) ore recovery of 80% for Au, an ore mining cost of US\$2.09/st, a waste mining cost of \$1.97/st, an ore processing and G&A cost of US\$3.13/st, and pit slopes between 45-50 degrees;

<sup>&</sup>lt;sup>4</sup> Resources are domain edge diluted and reported using a minimum internal gold cut-off grade of 0.003 oz/st Au (0.10 g/t Au).

<sup>&</sup>lt;sup>5</sup> Measured and Indicated Mineral Resources presented are inclusive of Mineral Reserves. Inferred Mineral Resources are not included in Mineral Reserves.

<sup>&</sup>lt;sup>6</sup> Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability. There has been insufficient exploration to define the inferred resources tabulated above as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration. There is no certainty that any part of the Mineral Resources estimated will be converted into Mineral Reserves;

<sup>7.</sup> Numbers in the table have been rounded to reflect the accuracy of the estimate and may not sum due to rounding.

<sup>&</sup>lt;sup>8.</sup> Mr. Michael Dufresne, M.Sc., P. Geol., P. Geo. of APEX Geoscience Ltd. is responsible for reviewing and approving the Pan mine open pit Mineral Resource Estimate. Mr. Dufresne is a Qualified Person ("QP") as set out in NI 43-101.

Table 14-15: The Pan Mine Resource Estimate Constrained within the '\$1700/oz' Au Pit Shell for Gold at Cut-off Grades Specific to Alteration Type (effective date of December 31, 2022)

| Alteration<br>Type | Classification | Tons (tons)* | Tonnes<br>(tonnes)* | Au Grade<br>(oz/ton) | Au Grade<br>(g/t) | Contained Au<br>(troy<br>ounces)* |
|--------------------|----------------|--------------|---------------------|----------------------|-------------------|-----------------------------------|
|                    | Measured*      | 36,000       | 33,000              | 0.015                | 0.53              | 600                               |
| Argillic/          | Indicated*     | 26,091,000   | 23,669,000          | 0.009                | 0.32              | 241,300                           |
| Unaltered          | M&I*           | 26,127,000   | 23,702,000          | 0.009                | 0.32              | 241,800                           |
|                    | Inferred*      | 3,148,000    | 2,856,000           | 0.012                | 0.41              | 37,400                            |
|                    | Measured*      | 8,000        | 7,000               | 0.016                | 0.56              | 200                               |
| Ciliaia            | Indicated*     | 11,112,000   | 10,081,000          | 0.011                | 0.36              | 116,900                           |
| Silicic            | M&I*           | 11,120,000   | 10,088,000          | 0.011                | 0.36              | 117,000                           |
|                    | Inferred*      | 430,000      | 390,000             | 0.011                | 0.36              | 4,500                             |
|                    | Measured*      | 44,000       | 40,000              | 0.016                | 0.55              | 700                               |
| Tatal              | Indicated*     | 37,203,000   | 33,750,000          | 0.010                | 0.33              | 358,200                           |
| Total              | M&I*           | 37,247,000   | 33,790,000          | 0.010                | 0.33              | 358,900                           |
|                    | Inferred*      | 3,578,000    | 3,246,000           | 0.012                | 0.40              | 42,000                            |

<sup>\*</sup>Notes:

<sup>&</sup>lt;sup>1</sup> CIM (2014, 2019) guidelines, standards and definitions were followed for estimation and classification of mineral resources.

<sup>&</sup>lt;sup>2</sup> The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues.

<sup>&</sup>lt;sup>3.</sup> Resources are stated as contained within a constrained pit shell; pit optimization was based on an assumed gold price of US\$1,700/oz, Silicic (hard) ore recoveries of 60% for Au and an Argillic (soft) ore recovery of 80% for Au, an ore mining cost of US\$2.09/st, a waste mining cost of \$1.97/st, an ore processing and G&A cost of US\$3.13/st, and pit slopes between 45-50 degrees;

<sup>&</sup>lt;sup>4</sup> Resources are domain edge diluted and reported using a minimum internal gold cut-off grade of 0.003 oz/st Au (0.10 g/t Au).

<sup>&</sup>lt;sup>5</sup> Measured and Indicated Mineral Resources presented are inclusive of Mineral Reserves. Inferred Mineral Resources are not included in Mineral Reserves.

<sup>&</sup>lt;sup>6.</sup> Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability. There has been insufficient exploration to define the inferred resources tabulated above as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration. There is no certainty that any part of the Mineral Resources estimated will be converted into Mineral Reserves;

<sup>7.</sup> Numbers in the table have been rounded to reflect the accuracy of the estimate and may not sum due to rounding.

<sup>&</sup>lt;sup>8.</sup> Mr. Michael Dufresne, M.Sc., P. Geol., P. Geo. of APEX Geoscience Ltd. is responsible for reviewing and approving the Pan mine open pit Mineral Resource Estimate. Mr. Dufresne is a Qualified Person ("QP") as set out in NI 43-101.

Table 14-16: Sensitivity Analysis of the Pan Mine Edge-diluted Resource Estimate Constrained within the '\$1700/oz' Pit Shell for Gold at Various Cut-off Grades (effective date of December 31, 2022)

| Classification | Au Cut-off<br>(oz/ton) | Au Cut-off<br>(g/t) | Tons<br>(tons)* | Tonnes<br>(tonnes)* | Au Grade<br>(oz/ton) | Au Grade<br>(g/t) | Contained Au<br>(troy<br>ounces)* |
|----------------|------------------------|---------------------|-----------------|---------------------|----------------------|-------------------|-----------------------------------|
| Measured*      | 0.003                  | 0.10                | 44,000          | 40,000              | 0.016                | 0.55              | 700                               |
|                | 0.004                  | 0.14                | 37,800          | 34,300              | 0.014                | 0.58              | 600                               |
|                | 0.005                  | 0.17                | 35,000          | 31,500              | 0.014                | 0.61              | 600                               |
|                | 0.006                  | 0.21                | 31,500          | 28,700              | 0.015                | 0.64              | 600                               |
|                | 0.009                  | 0.30                | 26,250          | 24,000              | 0.017                | 0.67              | 500                               |
|                | 0.012                  | 0.40                | 20,000          | 18,000              | 0.02                 | 0.67              | 400                               |
|                | 0.003                  | 0.10                | 37,203,000      | 33,750,000          | 0.010                | 0.33              | 358,200                           |
|                | 0.004                  | 0.14                | 33,986,000      | 30,832,000          | 0.01                 | 0.35              | 346,100                           |
| Indicated*     | 0.005                  | 0.17                | 30,022,000      | 27,236,000          | 0.011                | 0.38              | 328,300                           |
| Indicated*     | 0.006                  | 0.21                | 25,488,000      | 23,122,000          | 0.012                | 0.41              | 303,400                           |
|                | 0.009                  | 0.30                | 15,950,000      | 14,469,000          | 0.015                | 0.51              | 234,000                           |
|                | 0.012                  | 0.40                | 9,481,000       | 8,601,000           | 0.018                | 0.62              | 168,500                           |
|                | 0.003                  | 0.10                | 37,247,000      | 33,790,000          | 0.010                | 0.33              | 358,900                           |
|                | 0.004                  | 0.14                | 34,039,000      | 30,880,000          | 0.01                 | 0.35              | 346,800                           |
| Measured and   | 0.005                  | 0.17                | 30,072,000      | 27,281,000          | 0.011                | 0.38              | 328,900                           |
| Indicated      | 0.006                  | 0.21                | 25,533,000      | 23,163,000          | 0.012                | 0.41              | 304,000                           |
|                | 0.009                  | 0.30                | 15,985,000      | 14,501,000          | 0.015                | 0.51              | 234,500                           |
|                | 0.012                  | 0.40                | 9,501,000       | 8,619,000           | 0.018                | 0.62              | 168,900                           |
| Inferred*      | 0.003                  | 0.10                | 3,578,000       | 3,246,000           | 0.012                | 0.40              | 42,000                            |
|                | 0.004                  | 0.14                | 3,217,000       | 2,918,000           | 0.012                | 0.42              | 40,100                            |
|                | 0.005                  | 0.17                | 2,871,000       | 2,604,000           | 0.013                | 0.46              | 38,500                            |
|                | 0.006                  | 0.21                | 2,563,000       | 2,325,000           | 0.014                | 0.49              | 36,800                            |
|                | 0.009                  | 0.30                | 2,050,000       | 1,859,000           | 0.017                | 0.58              | 35,100                            |
|                | 0.012                  | 0.40                | 1,392,000       | 1,263,000           | 0.02                 | 0.7               | 28,400                            |

#### \*Notes:

<sup>1.</sup> CIM (2014. 2019) guidelines, standards and definitions were followed for estimation and classification of mineral resources.

<sup>2.</sup> The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues.

<sup>3.</sup> Resources are stated as contained within a constrained pit shell; pit optimization was based on an assumed gold price of US\$1,700/oz, Silicic (hard) ore recoveries of 60% for Au and an Argillic (soft) ore recovery of 80% for Au, an ore mining cost of US\$2.09/st, a waste mining cost of \$1.97/st, an ore processing and G&A cost of US\$3.13/st, and pit slopes between 45-50 degrees;

<sup>4.</sup> Resources are domain edge diluted and reported using a minimum internal gold cut-off grade of 0.003 oz/st Au (0.10 g/t Au).

<sup>5.</sup> Measured and Indicated Mineral Resources presented are inclusive of Mineral Reserves. Inferred Mineral Resources are not included in Mineral Reserves.

<sup>6.</sup> Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability. There has been insufficient exploration to define the inferred resources tabulated above as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration. There is no certainty that any part of the Mineral Resources estimated will be converted into Mineral Reserves;

<sup>7.</sup> Numbers in the table have been rounded to reflect the accuracy of the estimate and may not sum due to rounding.

8. Mr. Michael Dufresne, M.Sc., P. Geol., P. Geo. of APEX Geoscience Ltd. is responsible for reviewing and approving the Pan mine open pit Mineral Resource Estimate. Mr. Dufresne is a Qualified Person ("QP") as set out in NI 43-101.

The Pan Mine Resource pit shell constrained MRE represents approximately 54% of the total volume and 61% of the total gold ounces in the entire unconstrained Pan Mine block model that was estimated in 2022.

# 14.12 Discussion of Resource Modelling and Risks

The drilling of 457 RC and 38 core holes by Calibre from 2020 to 2022 in the Pan resource area (including 303 RC and 23 core holes since the last MRE was constructed) focused on Pan South. Central and North greatly improved the understanding of the geological model that was used in the construction of the 2022 MRE herein. The geological and mineralization domains were improved and adjusted based upon this drilling versus the 2020 MRE constructed by APEX (SRK 2021), which was largely based on a significant amount of pre-2018 drilling. The Calibre 2020 to 2022 drilling also allowed for systematic capture of new fire assay Au data with concomitant cold CN soluble Au for all 605 RC and core holes and a thorough review of lithology, alteration, oxidation and gold mineralization across the entire Pan Mine area. The 2022 MRE also incorporated the use of the detailed and extensive blast hole data which was used to help guide the delineation of the mineralization domains for use in LVA trends and ongoing planning for drilling the extensions of potential mineralized zones.

Most of the data obtained from the 2020 to 2022 RC and core drilling at Pan has confirmed that the majority of mineralized material in the current MRE is oxidized with moderate to good CN soluble Au recoveries. However, there are some significant differences in the hardness of the mineralized material particularly between North and South Pan, and the behavior of that material with crushing. In addition, the current mining levels have progressed beyond much of the areas characterized by prior metallurgical work defined by historical core holes. The distribution and volumes of the "soft" versus "hard" mineralized material is not well understood nor well mapped in the current geological and MRE model. The gold recovery, bulk density and material hardness models for the Pan Deposits represent a low to moderate risk to the current MRE and warrant follow-up work. Additional work, including core drilling and detailed metallurgical work, will be required to improve the understanding of the recovery, bulk density and perhaps hardness models and translate that into an estimate of volumes and tonnages.

The authors are not aware of any other significant material risks to the MRE other than the risks that are inherent to mineral exploration, development and mining in general. The authors of this report are not aware of any specific environmental, permitting, legal, title, taxation, socio-economic, marketing, political or other relevant factors that might materially affect the results of this resource estimate much of which is mitigated with the Pan Gold Deposit currently being mined profitably.

# 15 Mineral Reserve Estimate

The conversion of mineral resources to ore reserves required accumulative knowledge achieved through Lerchs-Grossmann (LG) pit optimization, detailed pit design, and associated modifying parameters. Reserve estimation was performed using Hexagon's MinePlan® software and applies to the full Calibre Pan resource. Detailed pit slope design, access, haulage, and operational cost criteria were applied in this process for all mining areas. The Project was built in U.S. units and all metal grades are in oz/ton.

The orientation, proximity to the topographic surface, and geological controls of the GRP Pan mineralization support mining of the ore reserves with open pit mining techniques. To calculate the mineable reserve, pits were designed following an optimized LG pit based on a US\$1,600/oz Au sales price. The quantities of material within the designed pits were calculated using a base Cutoff Grade (CoG) of 0.004 Au oz/ton for the argillized and unaltered material and a base CoG of 0.006 Au oz/ton for the silicified material. CoG calculation is based on the static US\$1,600/oz Au sales price utilized for ore reserves in this study.

# 15.1 Conversion Assumptions, Parameters and Methods

Conversion of resources to reserves requires consideration of:

- The ore extraction method(s) used in relation to the ore body characteristics, which determine mining dilution and recovery; and
- Project operating costs and resulting CoGs.

In accordance with the CIM classification system only Measured and Indicated resource categories can be converted to reserves (through application of appropriate modifying factors). Inferred Mineral Resources are treated as waste for the purposes of reserve estimates. For the reserve stated herin, Measured resources were converted to Proven reserves and Indicated resources were converted to probable reserves.

The CoG may be modified to other values during the mining operations to optimize business profits. These operational CoG grades may accomplish different specific purposes.

Additionally, Calibre has maintained an inventory of recoverable ounces in the heap leach pad which were included as Probable reserves. The metallurgy QP reviewed the methodology used for tabulating these ounces and approved their inclusion in the Reserve.

#### **15.1.1 Dilution**

The Reserve is reported using diluted Au grades that take into account surrounding waste gold grades as described in Section 14.7. This level of dilution was sufficient to properly predict mining grades and additional dilution was not included.

#### 15.1.2 Break Even Cut-off Grade

The typical expression for a break-even (BE) gold CoG is:

$$BE\ COG = \frac{\text{Total Unit Ore Mining, Processing and Administration Operating Costs}}{(\text{Au Price - (Royalty + Final Sales Costs)}) \times \text{Process Recovery}}$$

### 15.1.3 Internal Cut-off Grade

The internal CoG is an operational CoG that accounts for all operating costs except for the mining cost; only the difference between the cost of mining the block as ore versus waste is considered. Material between the BE CoG and the internal CoG is considered to be marginal material. Because this marginal material can pay for downstream processing costs and other ore related costs, it qualifies as ore.

The typical expression for an internal CoG for gold projects is:

$$Int. COG = \frac{\text{Total Unit (Ore - Waste) Mining, Processing and Administration Operating Costs}}{(\text{Au Price - (Royalty + Final Sales Costs)}) \times \text{Process Recovery}}$$

The internal CoG calculation was used as the basis of the CoGs applied for reserves in this report.

# 15.1.4 Cut-off Grade for Report

The CoG used by the QP to determine whether a block was ore or waste for the argillized and unaltered materials was 0.004 Au oz/ton.

For silicified material, an elevated cutoff grade of 0.006 Au oz/ton was applied. This cutoff was increased slightly from the calculated internal cutoff to account for the limited testwork available for silicified material near the CoG and generally observed reduced recovery for that material type at all grade ranges.

For cutoff calculations, the static US\$1,600/oz Au sales price for ore reserves in this study was used, along with fixed process recoveries of 80% for argillic and unaltered materials, and 60% for silicic materials. To maintain consistency with what was used in the optimization, these CoGs were used as a basis to define ore and waste in the production schedule.

### 15.2 Reserve Estimate

The Mineral Reserve Estimate for Pan is presented in Table 15-1.

Table 15-1: Pan Project Mineral Reserve Estimate as of December 31, 2022

| Classification                             | Mass<br>(000's st) | Grade<br>(oz/st Au) | Grade<br>(g/t Au) | Metal Contained (koz Au) |  |
|--------------------------------------------|--------------------|---------------------|-------------------|--------------------------|--|
| Proven                                     | 13                 | 0.015               | 0.499             | 0.2                      |  |
| Probable                                   | 21,799             | 0.011               | 0.368             | 234                      |  |
| Proven and Probable                        | 21,812             | 0.011               | 0.368             | 234                      |  |
| Probable Leach Pad Inventory (recoverable) |                    |                     |                   | 30                       |  |
| Total Proven and Probable                  |                    |                     |                   | 264                      |  |

Source: SRK 2023

### 15.3 Relevant Factors

The reserve estimated herein is subject to potential change based on changes to the forward-looking assumptions underlying cost and revenue estimates utilized in this study.

The heap leach pad has performed well at a hard to soft material ratio of 60% to 40%. As mining continues, there is less silicic (hard) material available based on the alteration types currently included in the resource model. To address the potential loss of permeability of the heap, SRK has assumed all material will be crushed, agglomerated, and stacked using a radial stacker starting in April 2024. The capital and operating costs for this equipment were accounted for in SRK's cashflow modeling.

The mine plan presented in this report only includes crushed material and is limited to 12,325 stpd based on historic performance of the current crusher. The mine is currently permitted to stack 14,000 tpd on the heap and may choose to stack ROM material during operations. While recoveries for ROM material are lower, they may be more economical than crushed material grades nearing the COG of this report due to the removal of crushing costs.

The QP is not aware of any existing environmental, permitting, legal, socio-economic, marketing, political, or other factors that are likely to materially affect the mineral reserve estimate beyond those discussed herein.

<sup>9.</sup> Reserves stated in the table above are contained within an engineered pit design following the US\$1,600/oz Au sales price Lerchs-Grossmann pit. Date of topography is December 31, 2022;

<sup>&</sup>lt;sup>10.</sup>In the table above and subsequent text, the abbreviation "st" denotes US short tons;

<sup>11.</sup> Mineral Reserves are stated in terms of delivered tons and grade before process recovery. The exception is leach pad inventory, which is stated in terms of recoverable Au ounces;

<sup>12.</sup> Costs used include a mining cost of US\$2.11/st and an ore processing and G&A cost of US\$3.88/st;

<sup>13.</sup> Reserves for argillic (soft) and unaltered ore are based on a minimum 0.004 oz/st Au CoG, using a US\$1,600/oz Au sales price and an Au recovery of 80%;

<sup>14.</sup> Reserves for silicic (hard) ore are based on a minimum 0.006 oz/st Au CoG, using a US\$1,600/oz Au sales price and an Au recovery of 60%;

<sup>&</sup>lt;sup>15</sup>Mineral Reserves stated above are contained within and are not additional to the Mineral Resource, the exception being leach pad inventory; and,

<sup>16.</sup> Numbers in the table have been rounded to reflect the accuracy of the estimate and may not sum due to rounding.

# 16 Mining Methods

The Pan mine is a conventional hard rock open pit mine that uses a contractor to drill, blast, load, haul, and provide support equipment. Mining is performed on 20 ft benches using CAT 992 loaders, CAT 777 haul trucks, and conventional drill and blast activities. The mine is permitted to crush and place up to 14,000 tons per day on the heap leach pad. In practice, ore is delivered to the crusher at a rate of 12,325 tons per day, then placed on the heap leach pad using the mining fleet. The additional 1,675 tons per day are placed as ROM material. For this report, the QP limited the ore mining rate to the 12,325 tons per day that the crusher has historically achieved. It is assumed that the ore mined after April 2024 will be crushed and agglomerated to maintain permeability in the heap leach pad.

Due to the argillic alteration present in the ore, there is potential to lose permeability in the heap if too much clay is placed at one time. To maintain permeability, ore is defined as either hard or soft based on alteration type by the ore control geologist, and a blend of 60% hard to 40% soft by weight is placed on the pad. For this mine plan, it was assumed that all planned ore flagged as argillic or unaltered would be considered soft, and silicic alteration would be considered hard. Based on the current resource model, the 60% hard to 40% soft ratio can only be maintained through March 2024. Starting in April 2024, the OP has assumed the ore will be agglomerated and stacked with a radial stacker.

# 16.1 Current Mining Methods

Currently, conventional open pit mining methods are implemented at Pan. A contract miner is conducting the mining activities. Ore and waste are drilled and blasted, then loaded into CAT 777 haul trucks with CAT 992 wheel loaders. The loading and haulage fleet is supported by track dozers, motor graders, and water trucks. Waste is hauled to waste rock storage facilities near each pit. Ore is hauled and placed directly at the crusher feed stockpile. At times when the ore mine exceeds the crusher capacity, ore may be placed directly on the heap leach pad without crushing. The ore placed at the crusher feed stockpile is rehandled into the crusher with one CAT 988 wheel loader operated by Calibre. The crushed ore is then rehandled from the crushed ore stockpile into CAT 777 haul trucks with CAT 992 wheel loaders and placed on the heap leach pad.

The Pan Mine uses a mining contractor for all mining activities except for crushing the ore and placement of ore into the crusher. The Pan Mine owns, operates, and maintains all other non-mining equipment on the site. The general site layout, including pits, waste dumps, crusher site, ponds, and heap leach pad, is shown in Figure 5-1.

Ore production is planned at a nominal rate of 12,325 t/d, equivalent to 4.5 Mt/y with an expected 5-year mine life. Mining is planned on a 7 day per week schedule on a double 12-hour shift per day Monday through Thursday and single 12-hour day shift Friday through Sunday, 365 days per annum. Peak ore and waste production is estimated at 58,000 t/d, with the average production being 40,000 t/d. The average LOM stripping ratio is 2.03:1 waste-to-ore, using a 0.004 oz/ton internal cut-off for the argillic and unaltered material and a 0.006 oz/ton elevated cut-off on silicic material. The change in CoG from one material to the next is a result of the metallurgical recovery testing, which showed the argillic and unaltered material to have an expected average recovery of 80% with the more silicified material having an expected recovery

of 60%. The silicic material also has less recovery information near cutoff and this cutoff was elevated above the internal cutoff to account for this.

# 16.2 Parameters Relevant to Mine or Pit Designs and Plans

Metallurgical test work and operating experience has indicated that the softer ores (argillic/clay ores) need to be blended with silicified (hard) ore to achieve adequate permeability and stability in the heap leach pad. Hard and soft ores are currently blended at a ratio of 60% rock to 40% clay. This ratio can be reduced as the pad is stacked higher, but additional testwork will be required to determine appropriate ratios for given stack heights. Test work also indicates that optimum gold recovery of the ores can be achieved after blending hard and soft ores with crushing and agglomeration using cement, due to the presence of clay minerals.

The LOM ratio of hard to soft ores, as represented by the resource model, is only 28% hard to 72% soft. Because of this, the 60% hard to 40% soft ratio can only be maintained through March 2024. Of important note, the majority of the ore (54%) is flagged as unaltered in the resource model. There is limited characterization work for this material and thus, the QP has elected to include it all as soft ore for conservatism with regard to permeability and pad stability. With this in mind, the QP has required the addition of agglomeration using cement and stacking via conveyor and radial stacker to the mine plan.

Pan has committed to completing a comprehensive material characterization study in 2023.

The inclusion of the unaltered material in the soft category has also resulted in that material having a recovery assumption of 80%. Based on the historic performance of the pad it is likely that this assumption is accurate.

The ore is loaded using CAT 992 wheel loads and transported on CAT 777 haul trucks to a stockpile near the primary jaw crusher, which is set up on the leach pad. A front-end loader feeds the primary jaw crusher, which conveys the ore to the crushed ore stockpile on the heap leach pad. The crushed ore is then rehandled from the crushed ore stockpile into CAT 777 haul trucks with CAT 992 wheel loaders and placed on the pad. Waste material is loaded into CAT 777 haul trucks and hauled directly to the waste dumps. There are several satellite pits (Syncline and Black Stallion) that will be backfilled with waste as part of the closure plan. The backfill operations will take place prior to closure, during the 5-year mine life as part of concurrent reclamation planning.

# 16.2.1 Geotechnical Design – Pits

This section provides a brief summary of the pit geotechnical study to arrive at pit slope design recommendations. Key aspects of the geotechnical study were the review of historical information, site investigations, geotechnical characterization, and stability evaluations.

#### **Information Review**

SRK reviewed provided historical information and found that the key geotechnical studies were reported in Golder (2011) and SRK (2021). Golder (2011) advanced on a scoping level study in 2009 and comprised drillhole investigations, field and laboratory testing, geotechnical characterization and slope stability assessment for North Pan and South Pan pits. For the pits considered in the study, Golder concluded that the achievable pit slope angles would be defined by bench-scale configuration. Triple benching of the design 20ft high production benches was recommended along with the design parameters reproduced in Table 16-1.

**Table 16-1: Pit Slope Design Parameters** 

| Pit Design Criteria          | Limestone Units | All Other Rock Units |  |  |
|------------------------------|-----------------|----------------------|--|--|
| Inter-Ramp Angles            | 50°             | 45°                  |  |  |
| Face Angles                  | 70°             | 63°                  |  |  |
| Catch Bench Berm             | 30 ft           | 30 ft                |  |  |
| Catch Bench Vertical Spacing | 60 ft           | 60 ft                |  |  |

Source: Golder, 2011

SRK (2021) was a study of the North Pan pit as part of a 2020 Resources and Reserves update. The objective of the study was to assess the validity of applying the Golder (2011) design parameters for the planned north pit expansion. The study comprised review of previous investigations, pit face mapping, pit performance review, geotechnical characterization and two-dimensional numerical slope stability assessment. The study concluded that the as-built North Pan pit was in compliance with the pit slope design parameters and operating with good final wall control practices. The study concluded that the Golder (2011) design parameters were acceptable if accompanied with good operations practices.

From the review SRK identified a number of gaps in the geotechnical knowledge relevant to the planned ultimate pits for the Resources and Reserves Update. To address some of these SRK designed an investigation program of eight oriented diamond cored drillholes, comprising five for North Pan pit and three for South Pan pit.

### **Investigations**

Calibre drilled and did downhole televiewer survey for four of the drillholes (Table 16-2) in the planned investigation program over September and October 2022. Logging of the recovered core was carried out by SRK in October 2022. Geomechanical laboratory testing of select recovered samples was conducted by Advance Terra Testing (ATT) in February 2023. The laboratory program comprised 12 Uniaxial Compressive Strength, 11 Triaxial Compressive Strength and 6 Brazilian Tensile Strength.

**Table 16-2: Investigation Program Drillholes** 

| Pit       | Drillhole | Easting<br>(ft)* | Northing<br>(ft)* | Elevation<br>(ft) | Azimuth (degrees) | Dip<br>(degrees) | Length (ft) |
|-----------|-----------|------------------|-------------------|-------------------|-------------------|------------------|-------------|
| North Pan | PC-22-015 | 1998208          | 14270913          | 6780              | 230               | 70               | 250         |
|           | PC-22-016 | 1998474          | 14272271          | 6601              | 360               | 60               | 251         |
| South Pan | PC-22-019 | 1998059          | 14280028          | 6621              | 200               | 60               | 200         |
|           | PC-22-020 | 1998313          | 14280335          | 6624              | 340               | 60               | 301         |

Source: SRK, 2023
\*- UTM WGS84\_ft

Investigation were also informed by a site visit by SRK in early December 2022. During the site visit SRK was able to make limited observations of the walls of the North and South Pan pits, and core from two select historical drillholes.

### **Characterization**

The site geology is presented in numerous reports and the geotechnical units are described in Golder (2011) and SRK (2022). Calibre provided SRK with the 3-D mine geology model which SRK understands was developed by SRK (US) in 2018. The model contains major structures and the primary lithology units: Devil's Gate Limestone, Pilot Shale, Joana Limestone, Chainman Shale, Diamond Peak Conglomerate and Tertiary Volcanics. In late December 2022, SRK was provided with a 3-D models of lithology (with units of Devil's Gate Limestone, Pilot Shale and Tertiary Volcanics) and alteration (argillic and silicious) which were produced by APEX Geosciences. SRK reviewed both models in the context of the planned ultimate pits and site visit observations. The SRK was adopted for the geotechnical characterization because it provided better resolution and also included the minor units. Based on this model, the walls of the planned ultimate pit are mostly comprised of Devil's Gate Limestone and Pilot Shale units. The 3-D alteration model is understood to be primarily for resource purposes, but shows 'spotty' distribution of the argillic alteration which is cannot be reasonably incorporated into pit-scale stability evaluations.

Based on the historical information, drillhole logging and laboratory testing data, SRK selected representative properties for geotechnical parameters required for slope stability analyses (Table 16-3). Parameters for the Devil's Gate Limestone and Pilot Shale units were defined with data from the investigations, and others were taken from previous studies. Mohr-Coulomb failure criterion was considered as more appropriate for the weaker material units.

**Table 16-3: Pit Slope Stability Input Parameters** 

|                                 | Unit                                          | Hoek and Brown |     |    |          | Mohr-Coulomb <sup>2</sup> |                       |
|---------------------------------|-----------------------------------------------|----------------|-----|----|----------|---------------------------|-----------------------|
| Unit                            | Weight <sup>1</sup><br>(lbs/ft <sup>3</sup> ) | UCS (psf)      | GSI | mi | D Factor | Cohesion<br>(psf)         | Friction<br>Angle (°) |
| Silicified Breccia <sup>1</sup> | 154                                           | 417708         | 40  | 10 | 0.5      | -                         | -                     |
| Devil's Gate Limestone          | 154                                           | 835344         | 46  | 10 | 0.5      | -                         | -                     |
| Pilot Shale                     | 138                                           | 522144         | 35  | 7  | 0.5      | -                         | -                     |
| Fault                           | 154                                           | -              | -   | -  | -        | 1440                      | 28                    |
| Tertiary Volcanics              | 154                                           | -              | -   | -  | -        | 2016                      | 40                    |

<sup>1.</sup> Golder, 2011

Source: SRK, 2023 (except where otherwise noted)

#### **Analyses**

For the North and South Pan pits constructed using the Golder (2011) slope design parameters, SRK selected representative sections to conduct overall pit scale 2-D limit equilibrium 2-D numerical analyses. Each cross section was selected to study the effect of rock mass quality, major fault locations relative to pit walls and lithologic contacts in the ultimate pit walls. Previous reports indicate that groundwater at the site occurs in a deep carbonate aquifer approximately 600 feet below the current North and South Pan pits. Consequently, piezometric pressures were not considered in the analyses. In accordance with observation reported in Read and Stacey (2009) that there have been no positively identified instances of earthquakes triggering slope failures in large open pit mines, static loading only analyses were conducted. The results showed that all sections achieved a Factor of Safety (FoS) greater than 1.3 which complies with the selected internationally recognized design acceptance criteria for overall slope scale for 'medium' consequence of failure (Read and Stacey, 2009).

#### **Conclusions**

The study concluded that the Golder (2011) pit slope design parameters appear to be appropriate for design of the planned ultimate pit. An additional recommendation which is relevant to the larger slopes now under consideration is for maximum bench stack height to be 300 feet vertical and which point slopes should be 'decoupled' with a geotechnical berm of at least 60 feet wide. Regarding the bench face angles, there was an assessment in SRK (2019) of the design compliance which found that design bench face angles were not in accordance with the design angles in the argillic and interbedded limestone units. It was interpreted that this was because the steeper angle was not able to be achieved. Based on site visit observations, this is certainly true for the argillic alteration materials which cannot support such steep bench face angles. As indicated in the alteration model, the argillic alteration occurs in pockets distributed throughout. Their chaotic distribution does not allow for this unit to be explicitly considered in slope design and analyses. However, where such pockets are observed in the course of mining localized reduction of bench face angle will be required. As recommended in SRK (2019), the achieved bench face angle of 50 degrees is considered to be appropriate. Achieving these design parameters will require the continuation of good blasting practices including pre-splitting and buffer blasting, as well as disciplined bench scaling and clean-up.

<sup>&</sup>lt;sup>2.</sup> SRK, 2021

The study and these conclusions were subject to few key limitations which were not able to be addressed in the study and which may have had an influence on the findings:

- The geology model used was from 2018 and has not been updated with pit wall exposure observations from mining since this time.
- The investigation program completed less than half of the drillholes in the program that SRK designed and recommended.
- The mining operation has not been conducting geotechnical inspections, monitoring or surveys which means that this critical pit behavior information was not available to inform analyses and design.

#### Recommendations

SRK provides the following recommendations accompanied with the note that there is reasonable potential for steepening slopes in some areas with the support of these standard industry practice measures:

- Update the SRK (2018) 3-D geology model to accurately reflect the lithology, major structures and alteration units exposed in the current pit walls and drillhole data.
- Using the updated geology model, construct a 3-D geotechnical domain model and refine their propertied based on additional drilling and geomechanical laboratory testing.
- Using the 3-D geotechnical domain model, refine and conduct additional slope stability analyses to verify and optimize the recommended design parameters.
- Implement a ground control monitoring plan including a program of pit wall monitoring and with associated Trigger Action Response Plans (TARPs) to appropriately respond to observed pit behavior.
- Instigate annual inspections by a suitably trained and experienced geotechnical specialist to assess the pit performance and stability, examine the pit design implementation practices, and review updated models.

# 16.2.2 Geotechnical Design – Waste Rock Disposal Areas

Designed Waste Rock Disposal Areas (WRDA) are based on the current mine plan, which predicts approximately 44.3 Mt of waste rock. The waste rock will be placed in two WRDA at an overall reclaimed slope of 3H:1V (18.4°).

Vegetation will be cleared from any additional required WRDA footprints; coarse woody debris and plant growth medium will be salvaged and placed in separate stockpiles. Coarse woody debris may be chipped and spread over reclaimed areas or added to growth media stockpiles. The final surfaces of the WRDA will be constructed by end dumping to create typical mining waste rock facilities. On sloped terrain, where safe and practicable, some weathered geologic materials below the plant growth medium may be pushed downhill to construct toe berms, to prevent rocks from scattering on the hillside below the toes of the WRDA.

# 16.2.3 Hydrological

Based on existing data and the recent installation of three water supply wells, groundwater at the Project occurs in a deep carbonate aquifer and a shallow alluvial aquifer along the normally dry stream channel west of the mine area. Shallow alluvial groundwater west of the mine area occurs at elevations that are approximately 500 ft higher than the deep carbonate aquifer. The deep carbonate aquifer is approximately 650 to 800 ft below the heap leach facility and approximately 600 ft below the bottom of the south pit. The rock mass in the current mine plan is above the carbonate aquifer water table, and groundwater is not a factor in mine design.

# 16.3 Pit Optimization

Pit optimization was completed using Hexagon's MinePlan® Economic Planner (MPEP) pit optimization software. Pit optimization is based on preliminary economic estimations of mining, processing and selling related costs, slope angles, and metal recoveries. These pit optimization factors differ from those reported in the final economic analysis, which is based on the pit design criteria and production schedule that follows the optimization work. The pit optimization software considered grades and tonnages in the model along with prices, recovery factors and mining, processing, and administrative costs to evaluate what material could be economically extracted using the Lerchs-Grossmann (LG) algorithm.

Pan's goals for the asset were to extend the mine life as they continue exploration efforts in the area. Because of this, the mining QP selected the \$1,600 shell (Revenue Factor = 1.0) as the basis for mine planning.

#### 16.3.1 Mineral Resource Models

APEX geoscience provided the mining QP with a 3D block model that was depleted to the September 30, 2022 EOM topo surface. Diluted total gold grades, densities, lithologies, and alteration information were included in this model as described in Section 15. The mining QP loaded this model into MinePlan software, and it serves as the basis for all material quantities reported in the mineral reserves estimate.

Only Measured and Indicated resources were considered in the evaluation; Inferred resources were treated as waste.

# 16.3.2 Topographic Data

Base topographic data is from an aerial survey completed in July 2010 by Aerotech Mapping of Reno, Nevada. Subsequently, the dataset has been updated with surveys from construction, and end of month surveys for the pit, leach pad, and dumps. The latest topography for the site is the end of month topography for December 2022. Material in the 3D block model above the December 2022 topo surface was considered mined out and was not included in the current mine plan.

### 16.3.3 Optimization Parameters and Constraints

Geotechnical slope parameters were determined by the rock units according to values in Table 16-5. and were incorporated into the LG runs. Diluted grades were used as described in Section 15.1.1.

#### **Royalties**

A royalty of 4% was applied to the Net Smelter Return.

#### Mining Costs

Operating costs were based upon the current mine contractor's Time and Materials (T&M) agreement.

Mining costs were estimated to be US\$2.11 per ton mined for the pit optimization.

#### **Processing Costs and Recoveries**

Processing costs for the Pan area deposits, were calculated to be US\$3.00 per ore ton for crushed ore. This estimate assumes primary crushing with addition of lime. This processing cost includes rehandling of the ore from the crushed ore stockpile to the leach pad cell, ADR and leaching costs. Recovery factors of 60% and 80% for silicic and argillic/unaltered materials, respectively, were used in the optimization runs.

#### **Other Costs**

General and administration costs were estimated at US\$0.88 per ore ton from the current staff levels planned.

The pit optimization parameters are summarized in Table 16-4.

**Table 16-4: Pit Optimization Parameters** 

| Argillic and Unaltered Material |                  |                      |  |  |  |  |  |  |
|---------------------------------|------------------|----------------------|--|--|--|--|--|--|
| Item                            | Cost/Rate (US\$) | Units                |  |  |  |  |  |  |
| Mining Cost                     | \$2.11           | US\$ per ton         |  |  |  |  |  |  |
| Processing Cost                 | \$3.00           | US\$ per Ore ton     |  |  |  |  |  |  |
| G&A Cost                        | \$0.88           | US\$ per Ore ton     |  |  |  |  |  |  |
| Process Recovery                | 80%              |                      |  |  |  |  |  |  |
| Slope Angle                     | Variable         | Varies by Rock Units |  |  |  |  |  |  |
|                                 | Silicic Material |                      |  |  |  |  |  |  |
| Item                            | Cost/Rate        | Units                |  |  |  |  |  |  |
| Mining Cost                     | \$2.11           | US\$ per Ore ton     |  |  |  |  |  |  |
| Processing Cost                 | \$3.00           | US\$ per Ore ton     |  |  |  |  |  |  |
| G&A Cost                        | \$0.88           | US\$ per Ore ton     |  |  |  |  |  |  |
| Process Recovery                | 60%              |                      |  |  |  |  |  |  |
| Slope Angle                     | Variable         | Varies by Rock Units |  |  |  |  |  |  |

### 16.3.4 Pit Slope Angles

SRK utilized the standard geotechnical guidance outlined in section 16.2.1, which defines slope angles based on limestone, other rock types, and fill. Table 16-5 provides the slope angles used to generate the pit shells.

Table 16-5: Slope angle sectors used to generate pit shells

| Sector                        | OSA Angle (degrees) |
|-------------------------------|---------------------|
| 1 (rock other than limestone) | 45                  |
| 2 (limestone)                 | 50                  |
| 10 (fill material)            | 27                  |

Source: SRK 2023

#### 16.3.5 Pit Optimization Results

Table 16-6 provides the material quantities within the US\$1,600/oz Au sales price LG pit.

Table 16-6: Ultimate LG Pit Material Quantities, US\$1,600/oz Gold Sales Price

| Pit   | Material                  | Mass       | Contair<br>Gra |       | Contained  | Au Metal  | Waste      | Stripping<br>Ratio |
|-------|---------------------------|------------|----------------|-------|------------|-----------|------------|--------------------|
|       |                           | (st 000's) | (opt)          | (ppm) | (oz 000's) | (g 000's) | (st 000's) | (w/o)              |
|       | Proven                    | 2          | 0.013          | 0.429 | 0.0        | 1         |            |                    |
| North | Probable                  | 7,930      | 0.012          | 0.405 | 94         | 2,915     |            |                    |
|       | Total Proven and Probable | 7,932      | 0.012          | 0.405 | 94         | 2,916     | 6,491      | 0.82               |
|       |                           |            |                |       |            |           |            |                    |
|       | Proven                    | 11         | 0.015          | 0.514 | 0          | 5         |            |                    |
| South | Probable                  | 13,719     | 0.011          | 0.368 | 147        | 4,581     |            |                    |
|       | Total Proven and Probable | 13,730     | 0.011          | 0.368 | 147        | 4,586     | 23,504     | 1.71               |
|       |                           |            |                |       |            |           |            |                    |
|       | Proven                    | 13         | 0.013          | 0.429 | 0.2        | 6         |            |                    |
| Total | Probable                  | 21,649     | 0.011          | 0.393 | 241        | 7,497     |            |                    |
|       | Total Proven and Probable | 21,662     | 0.011          | 0.382 | 241        | 7,503     | 29,995     | 1.38               |

Source: SRK 2023

During the optimization, a series of LG pits were generated from US\$900/oz to US\$2,100/oz gold prices. As the gold price increases, the pits grow larger in size and the ore and waste tonnages both increase. In Figure 16-1, a graph is presented showing the ore and waste tonnages and NPV using a constant US\$1,600/oz gold price with an assumed 5% discount rate against the pit shells generated at a given Au sales price. Best Case scenarios were generated where the best case mined each incremental shell in sequence before mining the ultimate shell last. Worst Case scenarios were generated where the ultimate shell was mined first top to bottom and the incremental shells were not mined in sequence as in the Best Case scenario. The ultimate LG pit configuration is shown in Figure 16-2.

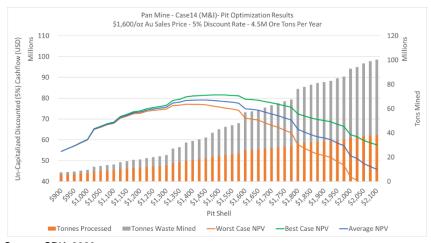



Figure 16-1: LG Pit Tonnages and NPV Sensitivity at a \$1,600 Gold Price

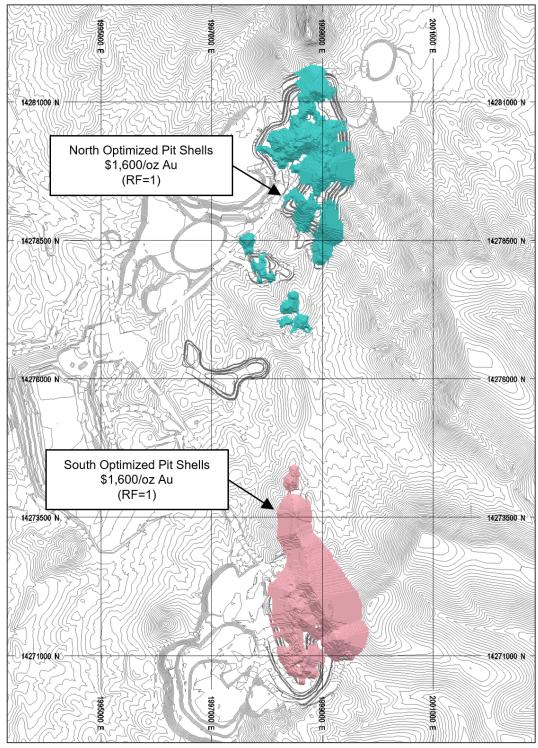



Figure 16-2: US\$1,600 Au Sales Price Ultimate LG Pit

# 16.4 Pit Designs

Haul roads and catch benches for the pits were based on the design criteria outlined in the Golder report (Golder, 2011). Haul roads are designed at a width of 90 ft and a maximum gradient of 10% to provide safe two-way haulage traffic when a berm is added. In some cases, the lowermost benches had the road grade increased to 12% and the haul road width narrowed to 70 ft to minimize excessive waste stripping. Pan's pit design criteria are presented in Table 16-7.

Table 16-7: Pit Design Criteria - Operations

| Pit Design Criteria          | Limestone Units | All Other Rock Units |
|------------------------------|-----------------|----------------------|
| Inter-Ramp Angles            | 50°             | 45°                  |
| Face Angles                  | 70°             | 63°                  |
| Catch Bench Berm             | 30 ft           | 30 ft                |
| Catch Bench Vertical Spacing | 60 ft           | 60 ft                |
| Road Widths                  | 90 ft           | 90 ft                |
| Road Grade                   | 10%             | 10%                  |
| Road Widths Pit Bottom       | 70 ft           | 70 ft                |
| Road Grade Pit Bottom        | 12%             | 12%                  |

Source: GRP, 2020

An ultimate pit shell was selected based on the pit optimization study described in section 16.3. This ultimate pit was used as the basis for detailed pit design work for Pan. This ultimate pit was further divided into individual economic phases to balance ore flow and cashflow over the life of the mine.

Using the selected economic phases, a series of pit designs were created including ramps and catch benches. In the south pit, several sub phases were developed to provide access to different areas of the pit, maximizing gold recovery while delaying waste stripping as much as possible. In the north pit, three independent designs were developed. These served as the basis for production scheduling and reserve reporting. The reserves for each pit design are included in Table 16-8.

Table 16-8: Reserves by Mining Area

| Pit   | Material                  | Mass       |       | ned Au<br>ade | Contained  | Au Metal  | Waste      | Stripping<br>Ratio |
|-------|---------------------------|------------|-------|---------------|------------|-----------|------------|--------------------|
| - 10  |                           | (st 000's) | (opt) | (ppm)         | (oz 000's) | (g 000's) | (st 000's) | (w/o)              |
|       | Proven                    | 2          | 0.013 | 0.429         | 0.0        | 1         |            |                    |
| North | Probable                  | 6,584      | 0.011 | 0.393         | 75         | 2,347     |            |                    |
|       | Total Proven and Probable | 6,586      | 0.011 | 0.393         | 75         | 2,348     | 7,877      | 1.20               |
|       |                           |            |       |               |            |           |            |                    |
|       | Proven                    | 11         | 0.015 | 0.514         | 0.2        | 5         |            |                    |
| South | Probable                  | 15,215     | 0.010 | 0.357         | 158        | 4,923     |            |                    |
|       | Total Proven and Probable | 15,226     | 0.010 | 0.357         | 158        | 4,928     | 36,460     | 2.39               |
|       |                           |            |       |               |            |           |            |                    |
|       | Proven                    | 13         | 0.015 | 0.499         | 0.2        | 6         |            |                    |
| Total | Probable                  | 21,799     | 0.011 | 0.368         | 234        | 7,270     |            |                    |
|       | Total Proven and Probable | 21,812     | 0.011 | 0.368         | 234        | 7,276     | 44,337     | 2.03               |

Figure 16-3 shows the phase designs for the Pan Mine.

¹-Reserves stated in the table above are contained within an engineered pit design following the US\$1,600/oz Au sales price Lerchs-Grossmann pit. Date of topography is December 31, 2022;

<sup>&</sup>lt;sup>2</sup> In the table above and subsequent text, the abbreviation "st" denotes US short tons;

<sup>&</sup>lt;sup>3</sup> Mineral Reserves are stated in terms of delivered tons and grade before process recovery.

<sup>4-</sup>Costs used include a mining cost of US\$2.11/st and an ore processing and G&A cost of US\$3.88/st;

<sup>&</sup>lt;sup>5</sup>Reserves for argillic (soft) and unaltered ore are based upon a minimum 0.004 oz/st Au cut off grade ("CoG"), using a US\$1,600/oz Au sales price and an Au recovery of 80%;

<sup>&</sup>lt;sup>6</sup>Reserves for silicic (hard) ore are based upon a minimum 0.006 oz/st Au CoG, using a US\$1,600/oz Au sales price and an Au recovery of 60%;

<sup>&</sup>lt;sup>7</sup>. Mineral Reserves stated above are contained within and are not additional to the Mineral Resource, the exception being leach pad inventory; and,

<sup>8</sup> Numbers in the table have been rounded to reflect the accuracy of the estimate and may not sum due to rounding

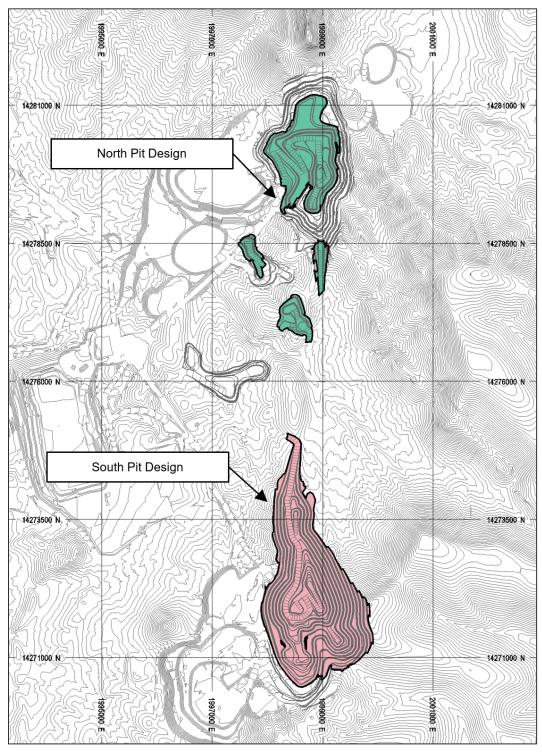



Figure 16-3: Pan North (Green) and South (Red) Pit Designs

# 16.5 Design Changes

Design changes are the changes in material quantities from the LG guide pit to a designed pit. The differences between the LG shells and the pit designs were related to small un-mineable pit areas and narrow, steeply dipping ore zones, which the LG will mine, but cannot be accessed after roads and ramps are included in the design pit. Designing a pit with access can deviate materially from the LG shell, particularly with small pits. The narrow deposit at Pan made designing ramp access to the bottom of the pit shell difficult without additional waste mining.

Of note, minimum mining widths and geotechnical wall configurations avoiding pinnacles in the middle of the pit and sharp noses added additional waste in design as compared to the LG pit. This also led to some ore in the pit bottoms being left behind.

Table 16-9 shows the percentage change between design and pit shell for each mining area, after the inclusion of in-pit ramps and minimum mining widths. A negative value indicates a lower value in the design pit than the guide LG.

The majority of the LG ore in the north pit that was not captured in the design is at the north end of the pit. Several designs were developed attempting to capture this ore in the mine plan, however, access costs drove the revenue of this mining area negative.

In the South, additional waste was mined to eliminate a nose of rock that the QP considered a geotechnical risk. In addition to this, additional ore tons were added when ramping to the north. Numerous design iterations were developed for this pit to ensure the design changes generated a pit shell with positive revenue.

**Table 16-9: Design Changes** 

| 0                                | Mining | Mass       | Contained | I Au Grade | Contained  | d Au Metal | Waste      |
|----------------------------------|--------|------------|-----------|------------|------------|------------|------------|
| Source                           | Area   | (st 000's) | (opt)     | (ppm)      | (oz 000's) | (g 000's)  | (st 000's) |
|                                  | North  | 7,932      | 0.012     | 0.405      | 93.8       | 2,916      | 6,491      |
| LG Shells                        | South  | 13,730     | 0.011     | 0.368      | 147        | 4,586      | 23,504     |
|                                  | Total  | 21,662     | 0.011     | 0.382      | 241        | 7,503      | 29,995     |
|                                  |        |            |           |            |            |            |            |
|                                  | North  | 6,586      | 0.011     | 0.393      | 75         | 2,348      | 7,877      |
| Designed Pits                    | South  | 15,226     | 0.010     | 0.357      | 158        | 4,928      | 36,460     |
|                                  | Total  | 21,812     | 0.011     | 0.368      | 234        | 7,276      | 44,337     |
|                                  |        |            |           |            |            |            |            |
|                                  | North  | -1,345     | 0.000     | -0.012     | -18.3      | -568       | 1,386      |
| Difference<br>(Design - LG)      | South  | 1,496      | 0.000     | -0.011     | 11         | 342        | 12,956     |
| (====9:- ==7                     | Total  | 151        | 0.000     | -0.014     | -7         | -226       | 14,342     |
|                                  |        |            |           |            | •          |            |            |
|                                  | North  | -17.0%     | -3.0%     | -3.0%      | -19.5%     | -19.5%     | 21.4%      |
| % Difference<br>(Design - LG)/LG | South  | 10.9%      | -3.1%     | -3.1%      | 7.5%       | 7.5%       | 55.1%      |
| (200igii 20)/20                  | Total  | 0.7%       | -3.7%     | -3.7%      | -3.0%      | -3.0%      | 47.8%      |

#### 16.6 Mine Production Schedule

The mine plan begins in January 2023 with mining in both the North and South Pan pits and targets a 60% to 40% ratio of hard to soft ores, respectively. The ratio drops after fifteen months of production when the hard material becomes scarcer according to the geologic model.

#### 16.6.1 Mine Production

The yearly mine production schedule is presented in Table 16-10, beginning in January 2023 and ending in late 2027 for a total 5 years. The schedule below was completed monthly for the first two years of mining, and quarterly for the rest of the mine life. The production schedule is driven by the nominal rate of 12,325 t/d ore tons per day (4.5 Mt/y). Peak ore and waste production is estimated at 58,000 t/d, with the average production being 40,000 t/d. The average LOM stripping ratio is 2.03:1 waste-to-ore, using a 0.004 oz/ton internal cut-off for the argillic and unaltered material and a 0.006 oz/ton elevated cut-off on silicic material.

Scheduling was carried out using the reserve output by bench from each phase of mining for each open pit. MinePlan® Schedule Optimizer (MPSO) was used targeting 4.5 Mt/y and less than two benches per month. The number of haulage trucks and loaders needed were calculated from the haulage profiles and dig rates generated by MPSO to ensure that the contractor's equipment list was sufficient to meet the planned production rate.

**Table 16-10: Mine Production Schedule** 

| Description |               | 2023   | 2024          | 2025   | 2026   | 2027  | Total  |
|-------------|---------------|--------|---------------|--------|--------|-------|--------|
|             | Tons (000's)  | 4,539  | 9 4,518 3,845 |        | 4,482  | 4,427 | 21,812 |
| Ore         | Au Oz/ton     | 0.012  | 0.011         | 0.011  | 0.010  | 0.010 | 0.011  |
|             | Au Oz (000's) | 53     | 48            | 40     | 47     | 45    | 234    |
| Waste       | Tons (000's)  | 7,708  | 10,965        | 13,505 | 10,323 | 1,836 | 44,337 |
| Total       | Tons (000's)  | 12,247 | 15,483        | 17,350 | 14,805 | 6,263 | 66,149 |

Charts showing contained gold ounces delivered to the leach pad, ore and waste production, and ore production by pit, by year, and by hard or soft type are shown in Figure 16-4 through Figure 16-7, respectively. The end of year mine layouts are shown in Figure 16-8 through Figure 16-14.

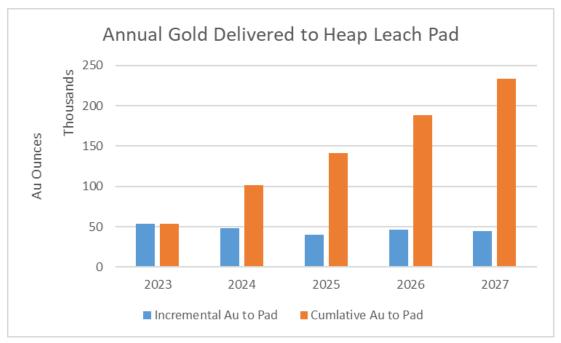



Figure 16-4: Contained Gold Ounces to Leach Pad by Mining Year

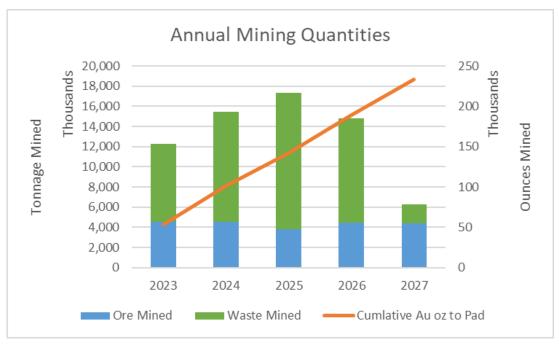



Figure 16-5: Ore and Waste Mining (mined tons and contained Au oz) by Mining Year

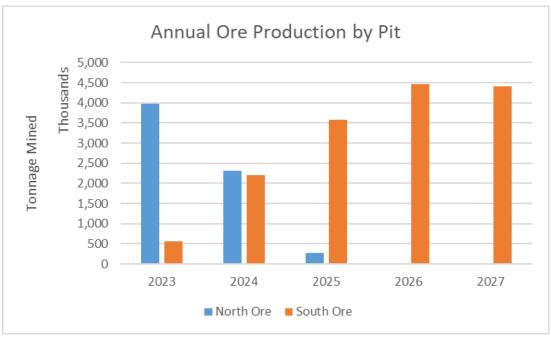



Figure 16-6: Ore Production by Pit and Year

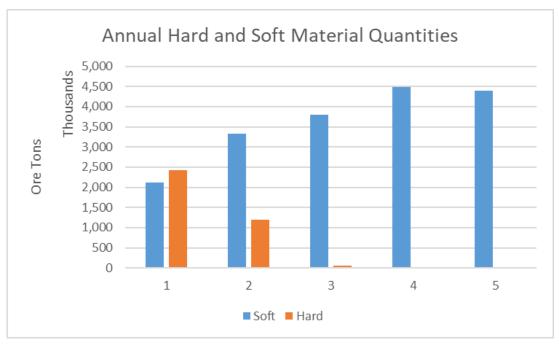



Figure 16-7: Hard and Soft Ore Production by Year

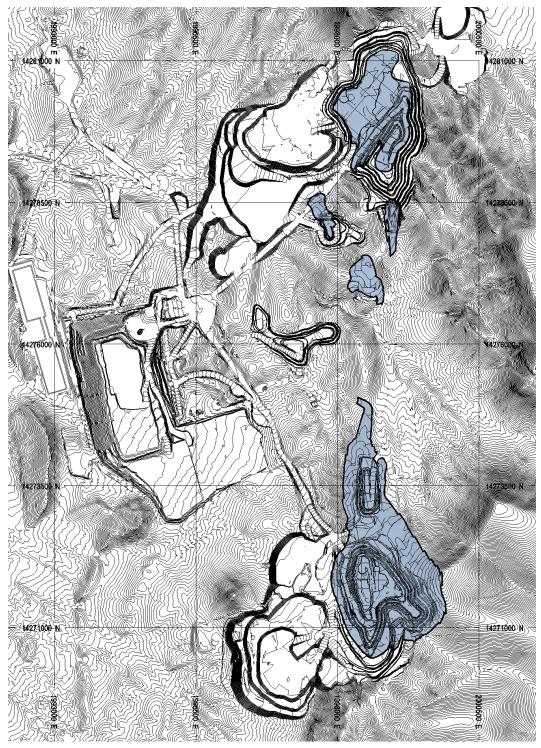



Figure 16-8: Start of Mining – January 1, 2023

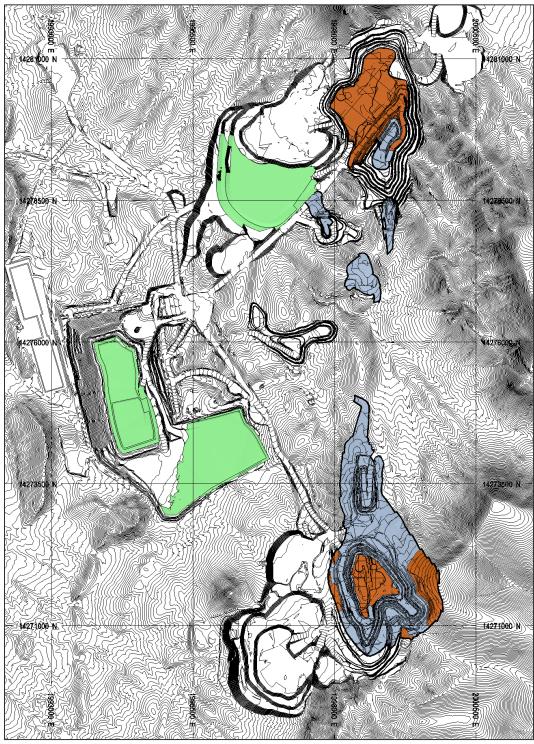



Figure 16-9: Mining Activities in 2023 (Red = Mining, Green – Stacking)

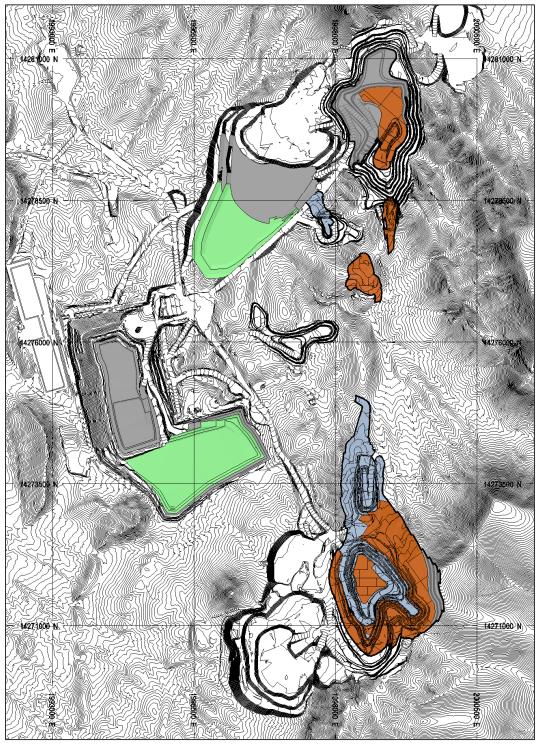



Figure 16-10: Mining Activities in 2024 (Red = Mining, Green - Stacking)

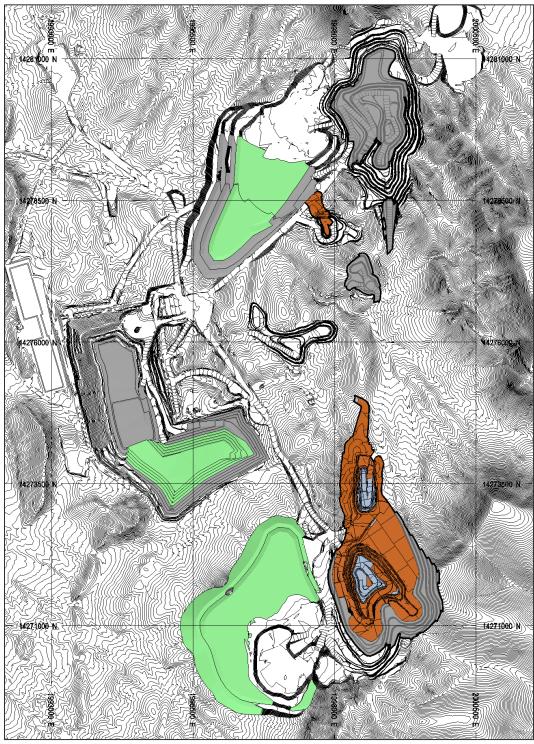



Figure 16-11: Mining Activities in 2025 (Red = Mining, Green - Stacking)

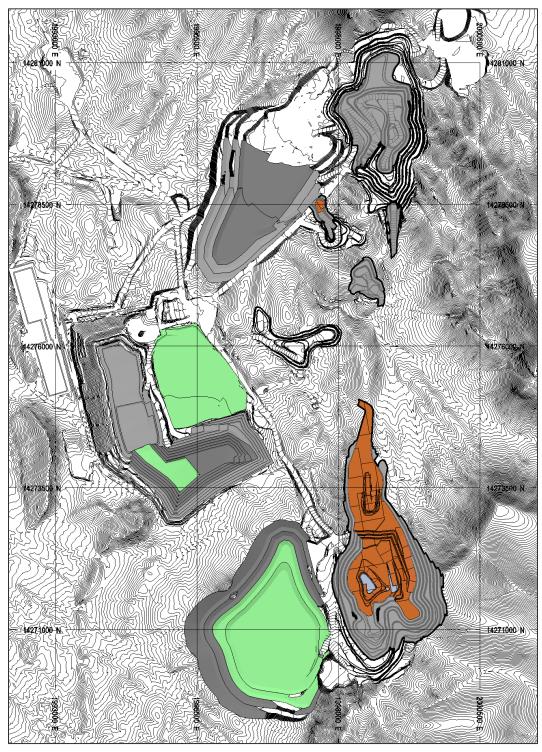



Figure 16-12: Mining Activities in 2026 (Red = Mining, Green – Stacking)

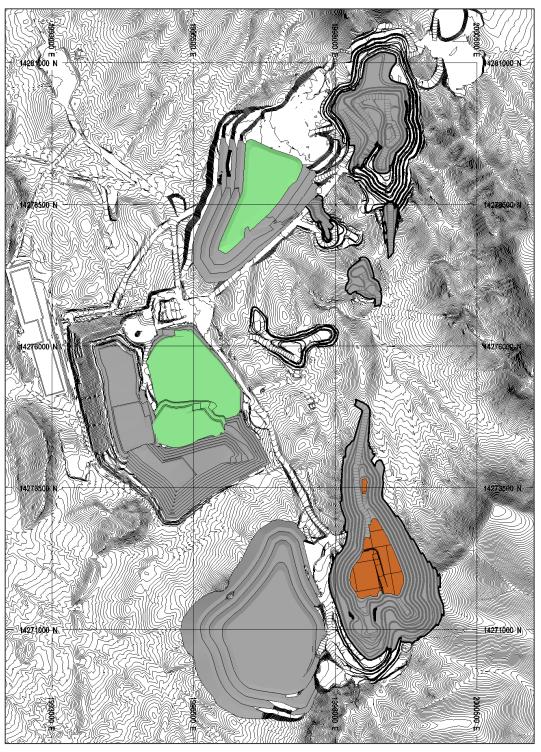



Figure 16-13: Mining Activities in 2027 (Red = Mining, Green – Stacking)

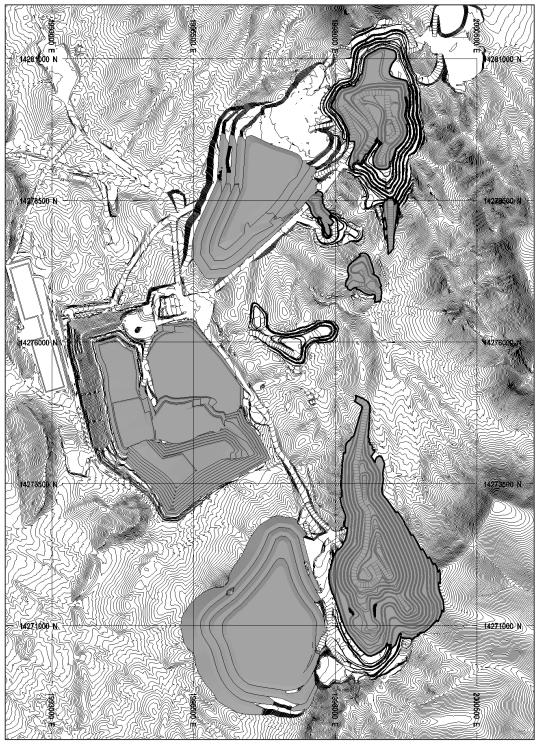
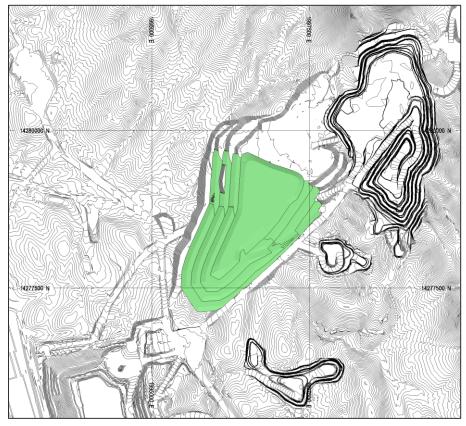
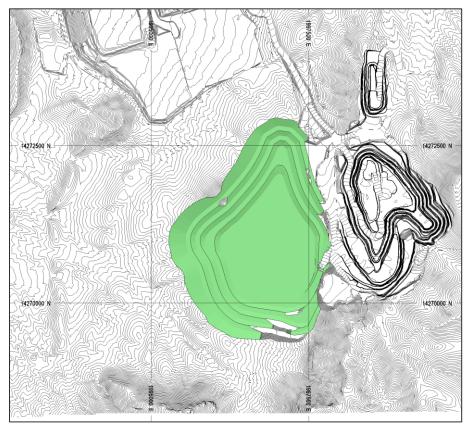



Figure 16-14: End of Mining


# 16.7 Waste and Stockpile Design

### 16.7.1 Waste Rock Storage Facility

The waste dumps were designed to represent typical haul and end dump facilities. The maximum overall slope angle of the waste dumps is limited to the final reclamation slope angle of 3H:1V, to minimize reclamation costs. Approximately 14.6 Mtons go to the North West WRDA, and approximately 29.7 Mtons will go to the South WRDA.


The North Pan waste dumps will be covered with a vegetated soil cover after resloping at reclamation to minimize the long-term potential for metals leaching. A 12-inch thick growth media cover will be placed over the dump.

The final configurations of the North Pan and South Pan waste dumps are shown in Figure 16-15 and Figure 16-16.



Source: Calibre 2023

Figure 16-15: North Pan WRDA



Source: Calibre 2023

Figure 16-16: South Pan WRDA

### 16.7.2 Ore Stockpiles

Two ore stockpiles are located near the crusher. The ore feed pile which is split for rock and clay ore placement will hold approximately 80,000 tons. The second ore pile located near the crusher on the leach pad is the crushed ore stockpile which will hold approximately 95,000 tons.

# 16.8 Mining Fleet and Requirements

## 16.8.1 General Requirements and Fleet Selection

All mine production equipment is provided by the mining contractor. Equipment on site includes CAT 992G/K loaders and CAT 777 off highway haul trucks. The contractor utilizes three Atlas Copco DM45 drills for blasthole drilling. Table 16-11 lists the mining fleet equipment numbers required to achieve the production schedule. Presently, there are 11 haul trucks at the mine. The mining contract is a Time and Materials based contract for equipment and manpower that allows Calibre to modify the size of the fleet

and crews as needed to meet the production requirements. Calibre is responsible for supplying fuel to the mining contractor.

**Table 16-11: Required Mine Production Equipment** 

| Category         | Make        | Model     | Number of Units |
|------------------|-------------|-----------|-----------------|
| Truck            | CAT         | 777F      | 11              |
| Water Truck      | CAT         | 773F      | 1               |
| Water Truck      | CAT         | 777D      | 1               |
| Grader           | CAT         | 14M       | 2               |
| Front End Loader | CAT         | 992K or G | 4               |
| Dozer            | CAT         | D10T/D9   | 4               |
| Dozer            | CAT         | D6        | 1               |
| Blasthole Drill  | Atlas Copco | DM45      | 3               |

Source: SRK, 2023

#### 16.8.2 Drilling and Blasting

Production drilling and blasting is included in the mining contract. Calibre is responsible for providing ammonium nitrate and fuel oil (ANFO) for blasting. The design parameters used to define drill and blast requirements are based on a 6.75 inch diameter blasthole on a 15 ft by 17 ft pattern for all production blasts. Benches are blasted and mined on 20 ft levels with three feet of sub-drill in the North Pit and four feet of sub-drill in the South Pit. Buffer rows and pre-shear are planned to allow for controlled blasting and to minimize damage to the highwalls. The powder factor for the blasting is 0.42 lb/ton for both ore and waste.

#### 16.8.3 Loading and Hauling

The main loading units at Pan are CAT 992K front end loaders. Cat 777 haul trucks with 100t capacity are the main hauling units; the loaders will require 4 to 5 passes to load the trucks. Dig faces are defined by ore control and are marked in the field with flags and on maps that are provided to the operators. The mine plan calculates the required loader and truck hours needed to meet production targets in the mine schedule. The required hours are presented to the contractor to ensure there is enough equipment and operators to meet the mine schedule. In the QP's opinion, the equipment listed in Table 16-11 is reasonable for an operation of this size and scale.

### 16.8.4 Support and Auxiliary Equipment

Support equipment will consist of three CAT D10 track dozers and one CAT D9 track dozer as the main dozing units and one CAT D6 utilized for the leach pad. Two CAT road graders service the access road, haul roads, and leach pad along with two CAT water trucks. Mobile light plants will be utilized for lighting the working areas during production in low light conditions. A maintenance service truck supplied by the contractor will be used for field maintenance.

#### 16.8.5 Manpower

Mining personnel is supplied by the mining contractor, which is also responsible for management of the mining crews. Calibre technical and mine supervision personnel direct the mining contractor. The contractor currently has one project manager, one operations superintendent, one project coordinator, one safety coordinator, three shift supervisors, one maintenance superintendent, and one administrative assistant on site.

Calibre has one shift supervisor to supervise the contractor and manage mining. Calibre provides technical staff for mine planning, surveying, and ore control. Required personnel are summarized in Table 16-12.

**Table 16-12: Personnel Requirements** 

|            | Supervisory and Technical | Operators | Maintenance              |
|------------|---------------------------|-----------|--------------------------|
| Contractor | 10                        | 88        | 20+ Contract Maintenance |
| Calibre    | 8                         | 0         | 0                        |

#### 16.8.6 Ore Control

Calibre currently implements a blasthole sampling system for ore control. Blasthole cuttings piles are cut orthogonally to the drill hole using a narrow shovel to obtain a representative sample. The sample bags are tagged with a number. The drill hole is then staked and tagged with the same number as the sample. Samples are then delivered to the on-site laboratory for cyanide solution and fire assay analysis.

Prior to blasting, the drill hole locations are surveyed and the cuttings logged for determining lithology and alteration type. This information is then used to develop a geologic map of the blast pattern. This geologic mapping on each blast and bench, with the assay results, are used to design ore blocks. Ore blocks are staked after blasting with lath and pin flags to guide mining. Movement due to blasting is accounted for in the field staking. Calibre geologists monitor mining to maintain ore and waste control for proper material routing.

# 16.9 Mine Dewatering

#### 16.10 Water Data Sources

Groundwater monitoring and water supply wells have been installed at the Project. Several historical wells in the Project vicinity have also provided groundwater data. There are no springs or bodies of surface water in the Project area.

#### 16.10.1 Surface Water

Surface water from precipitation will be diverted away from the open pits by using berms and ditches, which places the water in sediment basis for evaporation, infiltration or overflow.

Best management practices (BMP) are being used to limit erosion and reduce sediment in precipitation runoff from mining facilities and disturbed areas during construction, operations, and initial stages of reclamation. BMP utilized during construction and operations are designed to minimize erosion and control sediment runoff. These BMP include:

- Surface stabilization measures dust control, mulching, riprap, temporary gravel construction access, temporary and permanent revegetation/reclamation, and placing plant growth media;
- Runoff control and conveyance measures hardened channels, runoff diversions; and,
- Sediment traps and barriers check dams, grade stabilization structures, sediment detention basins, sediment/silt fence and straw bale barriers, and sediment traps.

Revegetation of disturbed areas will reduce the potential for wind and water erosion. Following construction activities, areas such as cut-and-fill embankments and plant growth media/cover stockpiles are being seeded as soon as practicable and safe. Concurrent reclamation is maximized to the extent practicable to accelerate revegetation of disturbed areas. Sediment and erosion control measures will be inspected periodically, and repairs performed as needed.

#### 16.10.2 Groundwater

Groundwater is in a carbonate aquifer that is approximately 500 ft below the bottom of the pit. This will not impact the pit highwalls or operations.

### 16.10.3 Dewatering System

A dewatering system is not necessary for the current mine plan.

# 17 Recovery Methods

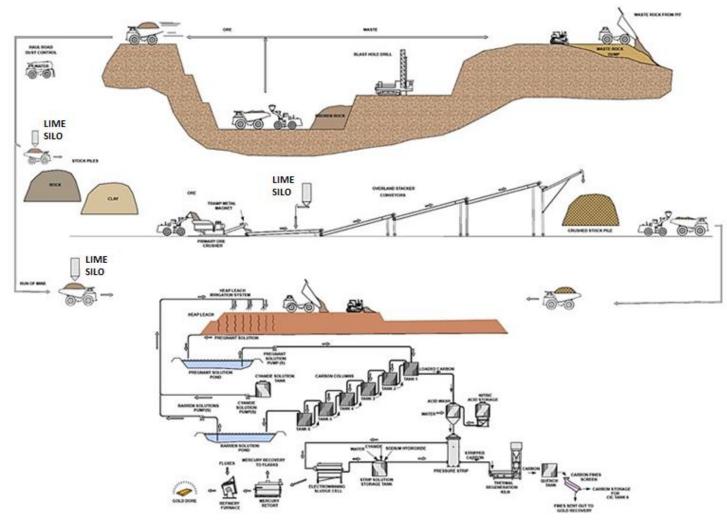
Calibre Mining operates a heap leach pad to recover gold in solution and produce doré for sale (see Section 19 Marketing). Since 2019, Pan has prepared heap leach pad feed by primary crushing and adding of lime or cement to regulate pH prior to stacking. Cyanide solution is distributed to the pad and allowed to percolate where it is recovered beneath the pad and sent to the ADR plant.

# 17.1 Historical Operation

The initial operation of the heap leach with South Pan ore encountered permeability problems due to the placement of clayey material and lack of blending with rocky material. The combination of ore placement in lifts as high as 50 ft., truck end dumping ore over the dump face leading to high segregation of coarse and fines as well as excessive equipment compaction on the dump surface. Leach solution applications much above 0.001 gpm/ft² resulted in excessive ponding. These areas had to be shut down to remain in compliance with environmental permits and regulations.

Laboratory testing showed a 60% rock and 40% clay blend would achieve adequate permeability for primary leaching and to sustain flows when up to 160 ft of additional ore stacked on top of the lift. Lower rock/clay ratios achieved acceptable permeability as the heap height increased and ore stacking on top of the blended material decreased.

ROM ore stacking methodology was modified to minimize equipment compaction, ensuring blending of rock and clay. All material was placed on the leach pad with truck dumping in approximately 22.5 ft lifts and a dozer to push and blend the material. A typical 250 ft x 250 ft leach cell was stacked at 22.5 ft for roughly 2/3 of the final pad volume. This practice was maintained until late 2018 when testing verified dumping a 15 ft lift and using the dozer to push and blend material over the crest maintained adequate permeability. ROM ore continued to be placed in this manner until the crushing/stacking system was installed.


#### 17.2 Current Practice

Approximately 14,000 stpd of ore at a 60:40 hard to soft ratio is mined from North and South Pan pits, crushed to -6" and combined with 3.5 lb/ton of lime in the truck bed (see Figure 17-2). After primary crushing, blended material is loaded into trucks from the crushed stockpile, dumped on the top surface of the leach pad cell, and pushed over with a dozer. For ROM pad loading, trucks dump directly.

The process flowsheet including the crushing system installed in 2019 is shown in Figure 17-1. Ore is mined concurrently from both North and South Pan pits and trucked to the crushing facility. Properly blended hard and soft ore is crushed and trucked to the pad where barren solution is used in transfer sprays for dust control.

Prior to dumping a new lift, the dump toe surface of the pad is ripped in one direction using a D10 dozer with a 6 ft to 8 ft shank. The ore is stacked in nominal 15 ft lifts. Trucks dump the bulk of the load on top of the cell material and it is pushed off with a dozer. The surface to be leached is cross ripped using a 6 ft

to 8 ft shank. The final rip is perpendicular to the direction the drip emitters will be ripped in. Emitters used are 1 gph (spaced at 24 inches) in drip line and 36 inches on the header. The application rate generally does not exceed 0.0026 to 0.003 gpm/ft². The area under drip averages 1.55 Mft² to 1.75 Mft² at an average application rate of 0.0022 gpm/ft².



Source: Calibre, 2022

Figure 17-1: Mining and Processing Flowsheet for Pan Mine

The existing pregnant and barren solution ponds constitute a solution management system that will accommodate all process solutions including meteoric waters that enter the system as a result of the 25-year, 24-hour storm event. Barren solution is pumped from the barren pond via submersible and booster pumps to the top of the ore on the heap leach pad and the ore is irrigated using drip tube emitters. Cyanide levels are monitored and controlled with cyanide addition to the barren line as it pumps solution to the pad. Pregnant solutions report to the pregnant collection pond and are subsequently treated in the existing conventional ADR plant.

Figure 17-2 to Figure 17-5 shows some of the current operating elements of the heap leach pad.



Source: SRK, 2022

Figure 17-2: Lime Silo to South Ore Truck



Figure 17-3: 36x50" Lippman Jaw Crusher with Stockpile Loading



Source: Brian Arthur, 2022

Figure 17-4: Example Heap Leach Panel



Source: Brian Arthur, 2022

Figure 17-5: Example Cell Showing Ripped Surface After Grading

Calibre has an assay laboratory on site which is used to conduct all mine and process assays. Gold content is measured using either cyanide leach tests (referred to as "shake" tests) or by fire assay. All

blast hole samples are crushed, split, pulverized and "shake" tested. Samples with shake test assays above 0.003 opt Au are subject to fire assays so the grade of the ore control polygon can be accurately determined.

Calibre has two atomic adsorption (AA) machines on site. One is designated for fire assays and the other for shake testing. Process solutions are usually read on the same AA machine as the shake tests samples.

A metallurgical laboratory has been set up in a space at the ADR plant and can complete column and bottle roll tests. Laboratory columns are available in a variety of sizes with the largest being six, 18 in x 3 ft. column cells; primarily used for monthly composites. Coarse monthly composites are blended and split to run duplicate columns and bottle rolls to determine the gold extractability to be compared to the forecast model. The weekly crushed composites are blended and split to run duplicate bottle rolls each week. Results from the bottle roll tests are turned around rapidly enough to make operational changes if poor recovery is detected. In recent months, this practice has not been done but plans are underway to increase metallurgical staff and supervise the continued testing of monthly composites.

# 17.3 Recent Operating Results

Approximately 14,000 stpd of ROM and crushed ore are stacked on the leach pad. Table 17-1 shows the actual crushed ore tons annually since 2019, peaking at 4.7 Mstpa. All tonnes above this level are ROM stacked and in 2022, 1.4 Mst were directly truck dumped.

Table 17-1: Crushed Ore Stacked on Pad

| Year             | Crushed Ore, Mstpa |
|------------------|--------------------|
| 2019             | 0.86               |
| 2020             | 4.61               |
| 2021             | 4.73               |
| 2022 (Projected) | 4.68               |

Source: Calibre, 2022

Ore grades have been between 0.005 opt to 0.018 opt for 2022, with soft ore slightly higher in grade than hard ore. Overall ore grades have averaged 0.012 opt for the past two years. As an estimate of ultimate gold extraction, shake test to fire assay (CN/FA) values are shown in Figure 17-6 and Figure 17-7. As noted in the recent whole PQ core testwork (Forte Analytical, 2022), CN/FA does not directly relate to final column leach test gold extraction, with both particle size and mineralogical factors to be considered as well.

On an annual basis, Pan's consistent operating conditions and ability to achieve the target blend of hard to soft material has allowed the operation to steadily improve heap leach extractions since the crusher was installed (see Figure 17-8). A recent review indicated gold extractions of 69% to 75% on this blend of material has been achieved (Brian Arthur, 2022).

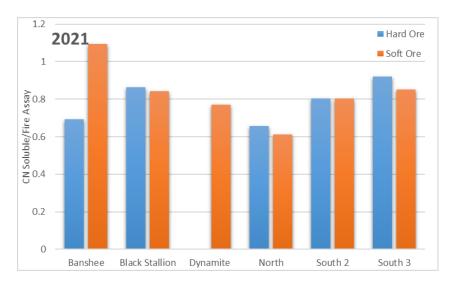


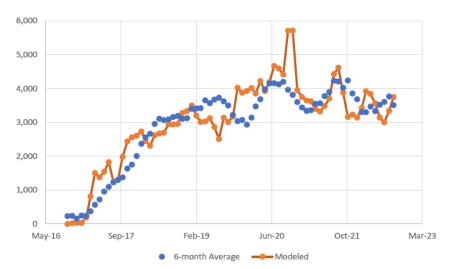

Figure 17-6: Gold Cyanide-Soluble/ Fire Assay for Different Pits (2021)



Source: SRK, 2023

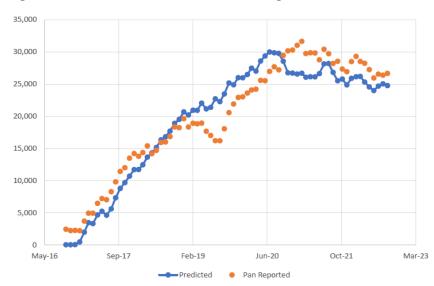
Figure 17-7: Gold Cyanide-Soluble/ Fire Assay for Different Pits (2022)

Pan maintains a database of daily ore tonnes and grades since 2017. Using this database of results, constant gold extractions have been back calculated to determine heap pad performance. Current estimates of gold extractions are:


Hard material: 50% ROM 60% crushed to 6"Soft material: 75% ROM 80% crushed to 6"

Typical extractions (relative to ultimate recovery) for both material types are:

- Year 1 = 75.5%
- Year 2 = 13.1%


- Year 3 = 6.5%
- Year 4 = 3.0%
- Year 5 = 1.5%

As RDI and Calibre both note, the ore leaches quickly. A comparison of actual vs. modelled ounce production and pad inventory is shown in Figure 17-8 and Figure 17-9 (Brian Arthur, 2022).



Source: Brian Arthur, 2022

Figure 17-8: Modelled vs. Six-Month Average Gold Ounce Production



Source: Brian Arthur, 2022

Figure 17-9: Modelled vs. Reported Leach Pad Inventory (Gold Ounces)

The updated mine plan generated by SRK is summarized in Table 16-10. Using the crushed and ROM recoveries mentioned above for both hard and soft Material. The expected recoverable ounces are shown below, with an estimated 30,000 ounces of gold remaining on the pad at the end of 2027.

Table 17-2: Estimate of Recovered Gold Ounces

| Description                       | 2023          | 2024  | 2025  | 2026  | 2027  | 2028  | 2029 | 2030 | Total |        |
|-----------------------------------|---------------|-------|-------|-------|-------|-------|------|------|-------|--------|
|                                   | Tons (000's)  | 4,539 | 4,518 | 3,845 | 4,482 | 4,427 |      |      |       | 21,812 |
| Crushed ore place on pad          | Au Oz/ton     | 0.012 | 0.011 | 0.011 | 0.010 | 0.010 |      |      |       | 0.011  |
|                                   | Au Oz (000's) | 53    | 48    | 40    | 47    | 45    |      |      |       | 234    |
| Recovered ounces from tons placed | Au Oz (000's) | 39    | 35    | 31    | 35    | 35    | 3    |      |       | 179    |
| Recovered inventory ounces        | Au Oz (000's) |       |       |       |       |       | 15   | 10   | 5     | 30     |
| Total                             | Au Oz (000's) | 39    | 35    | 31    | 35    | 35    | 18   | 10   | 5     | 209    |

Source: SRK, 2023

## 17.4 QP Comments

Current practice is to maintain a blend of 60:40 hard to soft material, for both crushed and ROM heap leach pad feed. As discussed in Section 13, Pan's determination of hard versus soft is not well defined; historically described as Argillic vs. Silicified alteration, then changed to North vs. South pits and currently based on blasthole logging by a site geologist. While this might be sustained for short-term planning, it does not provide confidence the future mine plan can maintain the 60:40 target blend.

The mine plan showing ore tonnes by alteration for the next 36 months is shown in Figure 17-10. If Argillic alteration is assumed to be soft material, the expected blend is around 80:20 and much higher in % hard than the target of 60:40. If some of the Unaltered lithology is soft as well, then the target blend can be maintained.



Figure 17-10: Monthly Forecasted Pad Feed by Alteration

For accurate forecasting of future Pan heap leach pad performance, geometallurgical characterization of all Pan ore sources must be undertaken. This includes improved understanding of:

- CN/FA values versus material type and crushed size
- Effect of crushed size/ clay content on permeabilities under load

Better geometallurgical characterization may allow the target blend of hard to soft to be adjusted and accommodate the apparent shortage of soft material in the future. It is not known if some/all of the Unaltered alteration type can be considered soft material for blending purposes.

### 17.5 Consumables

The Pan heap leach pad and ADR plant operating cost consists of reagents, power, water, labor and G&A (as discussed in Section 21). A breakdown of reagent costs since 2018 is shown in Table 17-3. Reagent costs are primarily cyanide and cement/lime (for pH control) and increased from \$0.38/ton to \$1.03/ton in 2022. It is noted that Calibre have recently changed to lime instead of cement at 3.5 lb/ton equivalent addition, adding only to South material trucks.

Table 17-3: Reagent Cost 2018 to 2022

| Reagent         | 2018      |        | 2019      | 2019   |            |        | 2021       |        | 2022 to Oct |        |
|-----------------|-----------|--------|-----------|--------|------------|--------|------------|--------|-------------|--------|
| Reagent         | lbs       | \$/ton | lbs       | \$/ton | lbs        | \$/ton | lbs        | \$/ton | lbs         | \$/ton |
| Carbon          | 16,000    | 0.01   | 28,000    | 0.01   | 24,872     | 0.01   | 32,784     | 0.01   | 22,052      | 0.01   |
| Caustic         | 351,063   | 0.01   | 366,987   | 0.01   | 421,812    | 0.01   | 495,338    | 0.02   | 340,099     | 0.03   |
| Cyanide         | 695,114   | 0.21   | 819,110   | 0.25   | 963,620    | 0.27   | 1,448,362  | 0.45   | 1,167,496   | 0.50   |
| Cement          |           |        | 296,997   | 0.01   | 13,469,231 | 0.25   | 2,756,300  | 0.06   |             |        |
| Lime            | 7,007,515 | 0.16   | 5,302,866 | 0.12   | 4,311,380  | 0.09   | 20,001,066 | 0.50   | 16,888,400  | 0.47   |
| Acid            | 164,476   | 0.01   | 203,427   | 0.02   | 212,495    | 0.01   | 264,772    | 0.01   | 200,554     | 0.01   |
| Total<br>\$/ton | 0.38 0.42 |        | 0.64      |        | 1.05       |        | 1.03       |        |             |        |

Source: Calibre, 2022

Power consumption and cost per ton for power are given in Table 17-4 from 2018 to 2022. Power consumption increased in 2019 due to processing of higher tonnage (14,000 tpd from 10,000 tpd) and installation of a crushing and stacking circuit. However, overall cost/ton has increased from \$0.07 in 2018 to \$0.09 in 2022.

Table 17-4: Power Cost 2018 to 2022

|                  | 2018      | 2019      | 2020      | 2021      | 2022 to Oct |
|------------------|-----------|-----------|-----------|-----------|-------------|
| Consumption, kWh | 4,563,000 | 5,162,400 | 6,364,800 | 6,658,200 | 5,617,800   |
| Cost, \$/kWh     | 0.079     | 0.080     | 0.077     | 0.076     | 0.078       |
| \$/ton           | 0.07      | 0.08      | 0.09      | 0.10      | 0.09        |

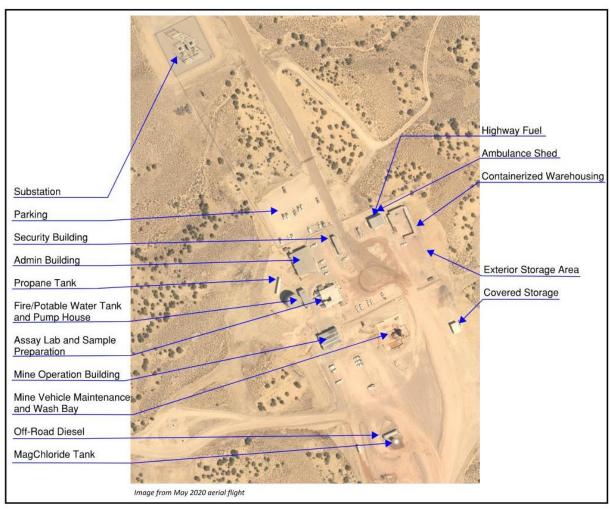
Source: Calibre, 2022

The peak make-up water requirements were estimated in 2017 to be 520 gpm. The water source for the project is production water well PW-1, located approximately three quarters of a mile north of the ADR plant and PW-2A located approximately 2,000 ft. southwest of the ADR plant. PW-1 and PW-2A wells are equipped with submersible pumps which pump to either the barren pond or a freshwater tank located three quarters of mile north of the ADR plant at the 6,520 ft. elevation (also used as a source of firewater). A third backup well PW-3 has been drilled near the ADR plant and could be put into service if either of the other wells failed. The system is designed for a peak flow of 5,000 gpm and consistent delivery of 3,800 gpm. No problems related to shortage of water have been experienced at the mine site. The cost of water is estimated to be \$0.01/ton of ore processed.

# 18 Project Infrastructure

The following introductory information is from Gustavson, 2015, and SRK Updated Technical Report, 2021. Content in the rest of this chapter was written or edited in 2023 for this report.

The Project is located five miles by an all-season gravel road from US Highway 50, a major east-west, two-lane paved highway through central Nevada. Highway 50 connects to the towns of Eureka, 25 miles to the west and Ely, 50 miles to the east. Both towns supply housing for mine personnel. In addition, Ely has mine vendors and support services. Elko, Nevada is a major hub for mining vendors and support services and is approximately 140 road miles to the north.


Airline service is available in Elko, Reno, Las Vegas, and Salt Lake City.

# 18.1 Infrastructure and Logistic Requirements

#### 18.1.1 On-Site Infrastructure

The Project is a fully operational mine with infrastructure constructed by the previous operator. The following is a brief description of the existing infrastructure. A crusher was installed in 2019.

Figure 18-1 shows exiting infrastructure at the administrative office area.



Source: GRP, 2020

Figure 18-1: Existing infrastructure at the administrative office area

### 18.1.2 Water Supply and Site Water Management

Calibre leases water rights with a total consumptive use limitation of 1,200.69 acre-feet annually. The peak diversion rate under all permits is 4.469 cubic Feet per second (2,005 gpm). This is equivalent to a continuous annual pumping rate of 744 gpm and is sufficient for all of the Pan Project's needs, as summarized in Table 18-1. Predicted periods of additional water consumption during leach pad expansion are limited to four months or less, averaging 174 gpm over a 12-month period, assuming a peak demand of 1.0 million gallons per day during major earthworks.

Table 18-1: Maximum Water Usage

|                    | Required Makeup GPM |
|--------------------|---------------------|
| Ore                | 200                 |
| Roads/Dust Control | 300                 |
| Operations         | 100                 |
| Construction       | 200                 |
| Total              | 800                 |

Source: GRP, 2020

Water is currently extracted from two wells, PW-1 and PW-2A, which were constructed to depths of approximately 900 ft and have static water levels at approximately 640 ft. Both wells are fully equipped and operational. The well PW-1 is equipped with a 125 HP pump and can deliver approximately 500 gpm. Well PW-2A is equipped with a 250 HP pump and is capable of delivering approximately 800 gpm. PW-3 has been drilled but does not have a pump installed at this time.

Water from PW-1 meets Nevada drinking water standards and will feed the potable and process water systems as well as fire suppression systems for all facilities. Well PW-2A has slightly elevated arsenic levels and is used for process water only. A chlorination system may be necessary to condition potable water supplied to the administration offices, security and safety building, assay laboratory, and process plant.

Fire water is supplied to Calibre's and mining contractor's offices, assay laboratory, security/safety building, ADR plant, and refinery. The fire suppression system is automated and includes a diesel powered firewater pump located in the pump-house adjacent to the fire water storage. Fire water is reserved and physically separated in the bottom half of the tank. In addition to the fire water pumps the pump-house also accommodates the process water distribution pumps, the truck wash pump, and potable water distribution pump.

Two septic systems were constructed. One serves the administration offices, assay laboratory and guard-house/safety building. The second system serves the process plant. Portable toilets will be placed at the mining and crushing areas as necessary.

#### 18.1.3 Service and Access Roads

The mine access road connects the project site to US Highway 50, approximately 5 miles from the front gate of the property. The access road is an all-weather gravel road. Calibre is responsible for all road maintenance, including snow removal. In the summer, Calibre applies magnesium chloride to the road for dust control.

### 18.1.4 Mine Operations and Support Facilities

The mining contractor uses a reinforced concrete pad for tire and large component maintenance work. Adjacent to this pad is a separate truck wash pad with high pressure monitors and oil separator.

Diesel and gasoline are purchased in bulk and stored on site at two refueling depots. Both fuel facilities have been constructed using double wall tanks as a means of secondary containment. Mining and on-site diesel-powered mobile equipment are fueled at the 30,000-gallon storage tank. Over-the-highway diesel vehicles and gasoline powered vehicles refuel at the split tank having a capacity of 6,000 gallons of diesel and 2,000 gallons of gasoline.

### 18.1.5 Process Support Facilities

The process building is a pre-engineered, high-bay/low-bay steel building, with a footprint of 13,000 ft<sup>2</sup>. The 30 ft high-bay section of the building contains all of the ADR process equipment, including the carbon-in-column (C-I-C) train, plant air system, and reagent storage tanks. The low-bay section houses the vault, refinery, and two security offices. The refinery is constructed with concrete-filled and steel-reinforced concrete blocks.

The laboratory is a pre-built modular building that is sized and fully equipped to handle all blasthole and process samples, including sample preparation and assaying. It includes a drying oven, fire assay kiln, and an instrument for AA analysis.

Buildings are heated with propane. Propane is also used in the carbon regeneration kiln and gold melt furnace. Tanks for propane storage are located in the administrative area and the process plant area. A belt agglomeration system is scheduled to be in place by April 2024. The crusher is described in Section 17.

## 18.1.6 Additional Support Facilities

The mine office building is a single-story, 4,320 ft<sup>2</sup> modular building that houses all administrative and technical staff. Meeting and training rooms are included in this building. It is located near the main access gate to the mine site.

The security and first aid building is a 240 ft<sup>2</sup> modular building which is located at the main gate. Standard security measures and operating procedures are established to control access to the site and secure the gold product. Security cameras record key areas around the mine site. Magnetic door locks with electronic keypads are used to control property gates and facility access.

The perimeter of the mine site is fenced with 3-strand barbed wire to keep out unauthorized personnel and grazing cattle. A security chain link fence is installed around the two process water ponds.

The emergency vehicle garage is a 1,200 ft<sup>2</sup> pre-engineered building to house the emergency and rescue vehicle.

The mining contractor has a single-story, 2,880 ft<sup>2</sup> modular building for administrative staff offices, a crew line out area, and training rooms.

A small pre-engineered steel building provides short-term storage for hazardous materials before they are shipped off-site to approved hazardous waste storage or disposal facilities.

A microwave-based communication system is on site to support internet and VOIP necessary for daily operation of the mine, plant, and office. The mine site also has good cell phone coverage.

A two-way radio system is established at the Project. Plant operators, survey crews, supervisors, and the mine contractor have portable hand-held radios for operational communications.

### 18.1.7 Power Supply and Distribution

The project is connected via a 69 kV utility power line to the mine substation with two transformers, each with a maximum capacity of 8,300 M Volt-Amperes, installed for 100% redundancy and being more than able to support all anticipated load additions and project expansions. The initial connected electrical load for the current operation is approximately 2.4 megawatts. The normal operating demand load is estimated to be 2.1 megawatts. When crushing, screening and agglomeration equipment are added, the demand load will increase to approximately 3.6 megawatts. When the anticipated load exceeds this level, a new contract will need to be negotiated with the utility company.

Site power is distributed throughout the mine site with three phase overhead powerlines at 24.9 kV. Local transformers drop the voltage to three phase 480 V or single phase 110/220 at the administrative area, the Process Plant, the water wells and at the future new crusher and ore stacking facility.

In the event of utility power interruption, back-up power is provided by a 1.5 MW diesel powered generator sized to run the pregnant and barren solution leach pumps thereby ensuring continuous control of process solutions and the maintaining of minimum freeboards in both process solution ponds. Back-up power is also available for critical pumps and processes in the ADR plant and communications systems.

## 18.2 Heap Leach Pad

Ore is currently processed on a 4,700,000 ft<sup>2</sup> leach pad, which is designed to support ongoing operations for roughly 3-years. Exact processing parameters can be found in Section 17. A 2,800,000 ft<sup>2</sup> expansion was designated as Phase 3A and was completed in 2021 which connected the south end of the existing pads. Expansions are required to place the mine reserve total tonnage. Phase 3B must be constructed in 2024; (approximately 1,500,00 ft<sup>2</sup>). A description of the heap leach facilities is detailed in Section 17.

## 19 Market Studies and Contracts

The process facility for this operation produces gold doré bars between 80 and 99% purity, with 2 to 3% silver on average. Gold bars will be weighed and assayed at the mine to establish value. The bars are shipped regularly to a commercial refiner where their value is verified. Sale prices are obtained based on world spot or London Metals Exchange market pricing and are easily transacted. Silver values were not included in the economic analysis for this study.

The source of gold prices used for the project economics was the gold price used for the Reserve estimate. The Reserve price used for this report is \$US1,600/oz Au.

Table 19-1: Gold price per ounce by year

| Year                    | 2023    | 2024    | 2025    | 2026    | 2027    | 2027 +  |
|-------------------------|---------|---------|---------|---------|---------|---------|
| Gold Price (\$US/oz Au) | \$1,600 | \$1,600 | \$1,600 | \$1,600 | \$1,600 | \$1,600 |

Source: SRK, 2023

### 19.1 Contracts and Status

Mining activities are currently performed by a contract miner, Ledcor Group (Ledcor). The mining contract was made available for review to support this study. The current Ledcor contract is in place through December 2025 and can be extended through normal business practices through the end of the mine life. The hourly equipment costs are subject to escalation and de-escalation starting in January 2023 and reviewed every six months after January 2023. Escalation and de-escalation factors are based on the U.S. Department of Labor Producer Price Index (PPI) for "Other Heavy Machinery and Rental and Leasing".

Terms for an off-take and smelting agreement are based on an existing refinery agreement with METALOR Technologies USA Corporation, an international smelting and refining company with a facility at 225 John L. Dietsch Boulevard, North Attleboro, Massachusetts.

Contract terms and doré treatment charges listed below were used in this study:

- Treatment and Refining Charge: US\$0.85/oz gross weight shipped under 1,000 troy ounces, US\$0.65/oz gross weight shipped over 1,000 troy ounces;
- Gold Return: 99.93% of assayed content;
- Settlement: 5 working days from receipt; and
- Transportation Fee: US\$875 pick-up fee plus US\$0.25 per gross troy ounce.

# 20 Environmental Studies, Permitting and Social or Community Impact

The Pan Mine is owned by GRP Pan, LLC d/b/a Fiore Gold Pan Mine (GRP), which is owned by Fiore Gold US (Inc), a subsidiary of Fiore Gold BC (Ltd), and finally a subsidiary of Calibre Mining Corp. Because the environmental permits and authorizations are in the name of GRP Pan, LLC (GRP), this section refers to GRP rather than Calibre.

## 20.1 Permitting Overview

Since Lyle Campbell's discovery in 1978, the Pan deposit has been explored by several exploration and/or mining companies, including Amselco Minerals, Hecla Mining Company, Homestake Mining, Echo Bay Exploration Inc., Alta Gold Company, Southwest Gold Inc., Latitude Minerals Corporation, Castleworth Ventures Inc., Pan Nevada Gold Corporation, and Midway Gold US Inc. (Midway) (Midway 2013).

An Exploration Plan of Operations and Reclamation Permit Application NVN-078305 was submitted to the U.S. Bureau of Land Management Ely District Office, Egan Field Office (BLM) and the Nevada Division of Environmental Protection- Bureau of Mining Regulation and Reclamation (NDEP-BMRR) on behalf of Castleworth Ventures, Inc. for exploration drilling at the Project site in 2004. An environmental assessment (EA) was undertaken as part of the permitting process culminating in a decision record/finding of no significant impact (DR/FONSI) and approval to disturb up to 25 acres for drill pads and drill roads. The FONSI was signed in April 2004. The NDEP-BMRR issued reclamation permit No. 0228 in 2004 which was transferred to Midway, successor in interest to Castleworth, in 2008 (Midway 2013).

An amendment to the 2004 exploration plan was submitted in 2010 on behalf of Midway, which proposed an additional 75 acres of disturbance to develop a new access road and construct additional drill pads and drill roads. An EA for this amendment, resulted in a DR/FONSI and approval in July 2011. The amended reclamation permit was approved by NDEP-BMRR on October 3, 2011 (Midway 2013).

GRP's predecessor, Midway initially submitted the Pan Mine Plan of Operations and Reclamation Permit Application in October 2011 per 43 Code of Federal Regulations §3809. The Pan Mine is located on public land administered by the BLM; as such, the BLM was the lead environmental permitting agency following the BLM requirements. The proposed activities were analyzed under the National Environmental Policy Act (NEPA) via an environmental impact statement (EIS).

The permitting schedule for the Pan Mine was originally dictated by the federal NEPA process requirements, which typically included at least one year of baseline studies followed by a scoping process and production of draft and final EIS documents. Public review periods were required at the scoping, draft and final EIS stages. The Pan Mine baseline studies were completed in 2011, and the project went through the scoping process in 2012. The draft EIS was released for public review in March 2013. The Pan Mine Project Final Environmental Impact Statement (FEIS), Volume I & II, Case File NVN-090444 (BLM 2013) was made available November 22, 2013, and the Record of Decision (ROD) was signed

December 23, 2013. The Pan Mine Plan of Operations and Reclamation Permit Application (2013 Plan) was authorized in December 2013. Construction at the mine began in January 2014.

## 20.2 Major Federal Authorizations and Permits

Mining is Nevada is regulated by both federal and state agencies. The federal and state permitting processes are well-defined.

## 20.2.1 Bureau of Land Management

Since the 2013 Plan, GRP and their predecessors initiated four Determinations of NEPA Adequacy (DNA) actions to make minor changes to the 2013 Plan authorized in accordance with the FEIS. The BLM authorizations allow up to 3,245.8 acres of disturbance. The ROD for the 2013 final EIS also included mitigation measures for the protection of select environmental resources as described in Section 20.5.

### 20.2.2 U.S. Fish and Wildlife Service

In December 2013, the BLM approved the Pan Mine Project Final Environmental Impact Statement NVN-090444 (BLM 2013) and the 2013 Plan. To support environmental analysis, the owner of the mine at that time, Midway, provided a voluntarily prepared Bird and Bat Conservation Strategy (BBCS). The BBCS (JBR 2013b) concluded that, due to the presence of two known eagle nests near project facilities, an Eagle Conservation Plan (ECP) would be prepared, so impacts to golden eagles were therefore not addressed in the BBCS. However, the BBCS contained numerous environmental protection measures to protect raptors and migratory birds that would also reduce or minimize potential project impacts on eagles. The BBCS also made recommendations for future eagle monitoring.

The FEIS concluded that moderate impacts to golden eagles could occur. The recommended mitigation was the development and implementation of an ECP in consultation with the United States Fish and Wildlife Service (USFWS). However, the USFWS did not require an ECP after the ROD. Nonetheless, in consultation with the USFWS and BLM in the spring of 2019, GRP prepared an ECP (Wildlife Resource Consultants [WRC] 2021).

Golden eagle nesting surveys have been conducted in the Pan Mine area since 2011. In 2019, 50 stick nests likely constructed by golden eagles were observed within the Project Area and a 10-mile buffer. Sixteen nesting territories were delineated, an average of 3.125 nests per territory. The number of nests per territory ranged from 1 to 14. Most territories had alternative nests; only two territories had only one nest. Thirty occupied nests were observed in the twelve territories over the five years of monitoring (2013-2015, 2018-2019), an average of 2.31 occupied nests per territory over the period, or 0.46 occupied nests per territory per year. Nesting attempts, defined as evidence of egg laying, were observed nineteen times over the period of monitoring. Current general guidance from the USFWS is that for large active mines where blasting occurs, nests within two miles of the mine may be at risk for impacts due to nesting disturbance (WRC 2021).

In 2021 GRP submitted an application to the USFWS for an eagle take permit valid for 30 years until July 2051 due to the potential for incidental disturbance take associated with mining activities over the life of

the mine. Two golden eagle nesting territories, Territory 5 and Territory 7 are within two miles of the Pan Mine; however, the nest in Territory 7 is over four miles south of the mine fence and mine disturbance. Impacts to this territory due to indirect impacts are unlikely and are not considered further (WRC 2021).

GRP identified risks to golden eagles from the Pan Mine and analyzed the potential for eagle take based on these risks and the golden eagle protection measures in place. These measures include design features, operational and administrative controls, or other actions and are documented in the FEIS, BBCS, and the reclamation plan. The analysis indicated that eagle take over the life of the mine is not anticipated, although there is potential for eagle take (WRC 2021).

GRP will implement five mitigation measure identified in the ECP to maintain stable or increasing breeding populations and to compensate for the potential incidental disturbance:

GRP will request authorization for disturbance take associated with mining activities that could result in the loss of one golden eagle breeding territory, Territory 5. This measure has been completed.

GRP will contribute to the USFWS' Pacific Southwest Region Bald and Golden Eagle Mitigation Account with the National Fish and Wildlife Federation, an approved in-lieu fee program, or a bond authorized under 43 CFR Subpart 3809: Surface Management. The contributions will be applied to retrofitting highrisk power poles within the same Eagle Management Unit (Pacific Flyway), although efforts will be made to implement mitigation within the natal dispersal range (109 mile-radius) if practicable. The amount of compensatory mitigation required will be determined through the USFWS Golden Eagle Resource Equivalency Analysis.

GRP may coordinate with the USFWS and the BLM on the possible creation of suitable nest platforms on the Pan Mine pit high walls during mine closure.

GRP will provide annual environmental training for personnel working onsite during operations. The training will include eagle recognition, identification, and ecology awareness to encourage proper operational conduct, response, and reporting if an eagle is observed or encountered onsite. Any eagle mortality encountered by personnel will be immediately reported to onsite environmental staff, who will in turn report to BLM, USFWS, and Nevada Department of Wildlife (NDOW) within 24 hours of discovery.

A carcass removal program has been instituted on the mine access road to remove carrion that could attract eagles. The road should be surveyed around daybreak each morning, and all carcasses found will be removed.

GRP will continue monitoring during operations within a two-mile radius of the active Pan Mine project area to obtain additional data on golden eagle nests.

## 20.3 Major State of Nevada Permits

#### 20.3.1 Reclamation Permit

Reclamation permits are issued to an operator prior to construction of any exploration, mining, milling, or other beneficiation process activity that proposes to disturb more than five acres. Reclamation is

regulated in Nevada under the authority of the Nevada Revised Statutes (NRS) 519A.010 - NRS 519A.280 and the Nevada Administrative Code (NAC) 519A.010 - NAC 519A.415.

The authorized Pan Mine Plan of Operations and Reclamation Permit Application was approved by the NDEP-BMRR in 2013 to disturb up to 3,233 acres. The NDEP-BMRR issued Reclamation Permit No. 0350, replacing Exploration Reclamation Permit No. 0228. GRP has completed multiple minor modifications to the authorized reclamation permit and reclamation cost estimate since 2014 to ensure alignment of operation goals with the regulatory authorizations. GRP is now authorized to disturb up to 3,245.8 acres within the 2013 Plan boundary.

#### 20.3.2 Air Permits

The NDEP Bureau of Air Pollution Control issues air quality operating permits pursuant to NAC 445B.001 through 445B.640 to stationary and temporary mobile sources that emit regulated pollutants. GRP maintains a Class II air quality operating permit (AP1041-3831.01), a surface area disturbance permit, and a Mercury Operating Permit to Construct (AP1041-3302). Monitoring of emissions and opacity is required under these permits.

#### 20.3.3 Water Pollution Control Permit

Mining in Nevada is regulated under the authority of the NRS 445A.300-NRS 445A.730 and the NAC 445A.350-NAC 445A.447. Water pollution control permits (WPCP) are issued to an operator prior to the construction of any mining, milling, or other beneficiation process activity. The need for a WPCP is not dependent on whether a discharge is intended, nor the quantity of ore to be extracted or processed.

In 2013, Midway was issued Water Pollution Control Permit NEV2012107 (Permit) to mine and process ore at the site. On October 14, 2014, the NDEP-BMRR received a notice of change of permittee from Midway Gold US Inc. to MDW Pan LLP. On 17 May 2016, the NDEP-BMRR received a notice of change of permittee from MDW Pan LLP to GRP Pan, LLC, the current permittee.

The WPCP authorizes GRP to mine the open pits, place waste rock in the waste rock dump areas (WRDAs), place ore on the heap and leach the ore with a sodium cyanide solution, collect the solution in lined process ponds, process the solution through the adsorption/desorption and recovery plant, and operate the refinery. Groundwater monitoring is required

GRP submitted the five-year renewal application to the NDEP-BMRR in October 2022. The renewal application is under regulatory review.

### 20.3.4 Dam Safety Permit

In the State of Nevada, the State Engineer is charged with dam safety pursuant to NRS 535. The goal of Nevada's dam safety program is to avoid dam failure and thus prevent loss of life and destruction of property. GRP maintains Dam Safety Permit J-679 issued by the Nevada Division of Water Resources for the for the process ponds which are over 20 feet in height above natural ground surface and impound over 20 acre-feet of water above natural ground surface.

### 20.3.5 Water Appropriations

Water appropriations are authorized by the Nevada Division of Water Resources. GRP leases water rights from KG Mining (Bald Mountain) Inc. Water appropriations are summarized below in Table 20-1.

**Table 20-1: Water Appropriations** 

| Well           | Permit No.   | Consumptive Amount (acre-feet per annum) |
|----------------|--------------|------------------------------------------|
|                | 81667        | 207.09                                   |
| Pan Mine, PW-1 | 81668        | 48.49                                    |
|                | 81669        | 442.91                                   |
| Pan Mine, PW-3 | 84729        | 89.1                                     |
|                | 84743, 84744 | 162.00                                   |
| Pan Mine, PW-2 | 84745        | 162.00                                   |
|                | 84746        | 89.10                                    |
| Total          | -            | 1,200.69                                 |

Source: GRP, 2022

### 20.3.6 Mining Stormwater Permit

The NDEP – Bureau of Water Pollution Control administers the mining stormwater permit program under NRS 445A.465 and 40 CFR 122.26. The program presently uses the 2013 Mining Stormwater General Permit (NVR300000) which has been administratively continued while a permit renewal is being drafted. The Pan Mine is operated under Mining Stormwater Permit MSW-42137 and maintains a stormwater pollution prevention plan for the site.

### 20.3.7 Industrial Artificial Pond Permit

Pursuant to NRS 502.390, NAC 502.475, NAC 502.480, and NAC 502.482, NDOW issued Industrial Artificial Pond Permit (IAPP) S407100 v.4 that authorizes GRP to construct and operate the Pan Mine in accordance with the conditions, limitations, and requirements set forth in this Permit. The IAPP allows GRP to construct and operate an artificial or artificially created body of water in the State of Nevada that contains chemicals or substances that cause or will cause the death of wildlife. GRP is required to implement and maintain wildlife protective measures that prevent wildlife mortality from occurring as a result of the Pan Mine and associated artificial or artificially created bodies of water. The IAPP stipulates standard wildlife protective measures and mortality reporting requirements.

## 20.4 Required Authorizations and Permits

GRP's predecessors acquired the required original federal, state, and local permits for construction, operations, and reclamation of the Pan Mine. GRP has successfully transferred the permits to their control and maintained required permits for operations. GRP has maintained compliance with the permits and authorizations, so renewal of major and minor permits required for operations within the regulatory mandated deadlines is anticipated. Table 20-2 provides a list of the major permits, and authorizations, and their status as of January 2023. All permits are issued to "GRP" unless otherwise noted.

Table 20-2: Status of Major Permits, Authorizations, and Licenses as of January 2023

| Permit                                                                              | Agency                                                                       | Permit Number                                         | Status                                                             |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|--|
|                                                                                     | Federal Permits and Authorizations                                           |                                                       |                                                                    |  |
| Notification of Commencement of Operations                                          | Mine Safety and Health Administration                                        | 26-02755                                              | Active                                                             |  |
| Record of Decision and approved 2013 Plan of Operation and subsequent modifications | DIM                                                                          | NVN-090444                                            | Active                                                             |  |
| Mineral Materials Negotiated Sale (Borrow)                                          | BLM                                                                          | NVN-089672                                            | Active                                                             |  |
| Programmatic Agreement (1)                                                          | BLM/state Historic Preservation Office                                       | NVN-090444                                            | Active                                                             |  |
| Eagle Take Permit                                                                   | USFWS                                                                        | Currently under review                                | Currently under review                                             |  |
| Hazardous Waste ID (RCRA)                                                           | USEPA/NDEP/Department of Energy                                              | LQG NVR 000 089 227                                   | Active                                                             |  |
| FCC Radio License                                                                   | Federal Communications Commission                                            | Reg. #0023652175 Call Sign WQUC703                    | Active                                                             |  |
| Explosives Permit                                                                   | Bureau of Alcohol, Tobacco, Firearms, and Explosives                         | #9-NV-033-33-1B-00416                                 | Active                                                             |  |
| OOAT On worth Throad                                                                | Demonstrate (Henryland Organia)                                              | Midway Gold Corporation (MDW) Pan Facility ID 4133675 | Author                                                             |  |
| CSAT Security Threat                                                                | Department of Homeland Security                                              | Facility survey ID 8022095 (dated Dec. 30, 2014)      | Active                                                             |  |
|                                                                                     | State Permits                                                                |                                                       |                                                                    |  |
| Air Quality Operating Permit -Class I                                               |                                                                              | AP1041-3674                                           | Active Class I (Expires 11/28/2027)                                |  |
| Surface Area Disturbance Permit                                                     | NDEP Bureau of Air Pollution Control                                         | Al 1041-3074                                          | ` ` '                                                              |  |
| Air Quality Operating Permit – Class II                                             | NDEP Bureau of Air Pollution Control                                         | AP1041-3831                                           | Active Class II (Expires 07/07/2027)                               |  |
| Air Quality Permit – Mercury Operating Permit to Construct                          |                                                                              | AP1041-3302                                           | Active (mercury permit [Lifetime])                                 |  |
| Reclamation Permit                                                                  |                                                                              | 350                                                   | Active                                                             |  |
| Water Pollution Control Permit                                                      | NDEP Bureau of Mining Regulation and Reclamation                             | NEV2012107                                            | Active (Expires 04/04/2023; renewal application submon 10/06/2022) |  |
| Dam Safety Permit                                                                   | Nevada Division of Water Resources                                           | J-679                                                 | Active                                                             |  |
| Water Appropriation                                                                 | Nevada Division of Water Resources                                           | Permits 81667 - 81669, 84743 - 84746                  | Leased from KG Mining (Bald Mountain) Inc.                         |  |
| Encroachment Permit                                                                 | Nevada Department of Transportation                                          | Occupancy Permit No. 200571                           | Active                                                             |  |
| Industrial Artificial Pond Permit                                                   | Nevada Department of Wildlife                                                | S407100S                                              | Active (Expires 06/20/2027)                                        |  |
| Stormwater Permit                                                                   | NDED Days on a (Water Bullyting Oceans)                                      | MSW-42137                                             | Active                                                             |  |
| Commercial Septic System Construction Permit                                        | NDEP Bureau of Water Pollution Control                                       | GNEVOSDS09-S-0397                                     | Active                                                             |  |
| Londfill Dannit                                                                     | NIDED Durant of Custoir ship Metarisla Management                            | SW 539                                                | A astir ra                                                         |  |
| Landfill Permit                                                                     | NDEP Bureau of Sustainable Materials Management                              | SW1762                                                | Active                                                             |  |
| Limited Detectories Con (LDC) Liverage                                              | Neural a Daniel for the Deniel for a Clare for the Detectors Co.             | 5-5427-01 (Admin)                                     | Author                                                             |  |
| Liquid Petroleum Gas (LPG) Licenses                                                 | Nevada Board for the Regulation of Liquefied Petroleum Gas                   | 5-5427-02 (ADR)                                       | Active                                                             |  |
| Potable Water "non-transient non-community water system"                            | NDEP Bureau of Safe Drinking Water                                           | WP-1142-NT-NTNC                                       | Active                                                             |  |
| Occupancy Permit                                                                    | State of Nevada Fire Marshall                                                | N/A                                                   | Active                                                             |  |
| Mine Safety                                                                         | Nevada Department of Business and Industry, Division of Industrial Relations | Mine ID 26-02755                                      | Active                                                             |  |

Also signed by Mt. Wheeler Power Company, Te-Moak Tribe of Western Shoshone Tribe, Duckwater Shoshone Tribe, and the Lincoln Highway Association, Nevada.

## 20.5 Environmental Study Results

Environmental baseline studies were conducted for numerous resources (e.g., air, surface and ground water, wildlife, special status plant and animal species, cultural) to support the development of the 2013 EIS. The FEIS identified potential impacts and specified mitigation for the following resources:

- Special status plant and animal species;
- Archeological and cultural resources;
- Wild horses;
- Mine waste characterization and management;
- Groundwater characterization; and
- Visual resources.

Potential future expansion outside of the 2013 Plan boundary will require that baseline studies be conducted on the new area. Additional resource studies may be stipulated by the BLM or the NDOW.

## 20.5.1 Special Status Plant and Animal Species

### Sagebrush Cholla

Three specimens of sagebrush cholla were found west of the site, outside of the 2013 Plant Area. Sagebrush cholla is a Nevada Natural Heritage Program special status species (BLM, 2013). Identification and relocation of plants found in disturbance areas was required by the ROD. Relocations ultimately only were necessary along the relocated powerline route.

The ROD stipulates that a BLM-approved native seed mix be used within sand cholla habitat. A reference area was established at the time of transplantation and will be used as the target for reclamation. The frequency, density, and ground cover of the native vegetation will be documented for sand cholla habitat.

### **Greater Sage-Grouse**

The Pan Mine is situated where there are few or no springs and seeps and sits high enough on the mountainside to not be located in primary sagebrush habitat. During the EIS development, the mine was considered to be located within "preliminary priority" and "preliminary general" habitats. The habitat definitions and nomenclature have since changed as has the status of greater sage-grouse as described in the Approved Resource Management Plan Amendments for the Great Basin Region (ARMPAs) (BLM 2015). However, the ROD was issued prior to the finalization of the ARMPAs, so the mine activities are not presently subject to the conditions of the ARMPAs.

In addition to the suitable greater sage-grouse habitat associated with the Project area, four greater sage-grouse leks were identified within three miles of the mine during the EIS development. Two of the leks are considered active, one lek has an unknown status, and one lek is inactive. The power line and access road route were relocated to avoid these leks. There are other leks further away that are either sufficiently far away from the mining activities to not pose a threat to the birds' well-being or are inactive. There were no timing limitations required during construction, and normal mining activities should not be impacted.

The ROD stipulates that no construction or new ground disturbance will occur during the period from March 1 through May 15 from one hour before sunrise until three hours after sunrise within two miles of active greater sage-grouse leks. Additionally, the Pan Mine has a Noise Monitoring Plan that stipulates specific hours of restricted activities, modified use of facilities within the 2013 Plan boundary, and best management practices for minimizing noise levels during times of critical greater sage-grouse lek activity. In coordination with the NDOW and the BLM, monitoring of noise at the lek locations during the lekking period (March 1 to May 15) from one hour before sunrise to three hours after sunset was conducted for multiple years and discontinued in 2021 due to no noise exceedances being attributed to the mine operations for two successive years. The noise monitoring is required to resume if changes to operations could raise the noise levels beyond what has been monitored previously.

A crusher was installed in 2019. When the crusher was installed, a study, including noise modeling, was conducted on the additional noise from the crusher prior to the lekking season of 2020. The results of the crusher noise survey resulted in updated passive monitoring protocols for the Pan Mine (GRP 2020) that were reviewed and approved by the BLM and NDOW. In 2020, a new access road was installed through the Pan Mine to the Gold Rock property. A noise study, including a noise model, was prepared to evaluate this change in operations. The model indicated the new access road and related traffic would not raise noise levels sufficiently to affect the lek.

Passive monitoring was undertaken for the 2021 and 2022 lekking seasons and is proposed again for the 2023 lekking period. Passive monitoring consists of modifying operations to avoid excessive noise on the west side of the property, observing mine operations and ensuring nothing out of the ordinary is occurring, notification and approval processes for non-routine activities, and training for all mine staff and contractors to ensure that noise levels stay below the baseline level that has been analyzed in past studies. Specific procedures are outlined in the Pan Mine Noise Monitoring Plan for 2020 (GRP, 2020). The noise limit is 10 decibels above ambient. Ambient is 18 decibels (L<sub>50</sub>).

From 2011 through 2015, the Sagebrush Ecosystem Council developed and implemented the Nevada Conservation Credit System (CCS) through the Sagebrush Ecosystem Technical Team (SETT). The goal of the Nevada CCS is to generate a net benefit of greater sage-grouse habitat by ensuring the impacts to greater sage-grouse habitat in the State of Nevada and federal lands from human disturbances (debits) are offset with commensurate habitat conservation actions (credits). Currently, the CCS is the required method for calculating off-site compensatory mitigation, which is a monetary sum a proponent would have to pay for the disturbance of greater sage-grouse habitat. However, as a result of the CCS not having a sufficiently developed process to determine accurate costs at the time of the original ROD for the Pan Project, or at the time of the preparation of the mitigation plan (2013 to 2019), GRP is not required to participate in the CCS program and may work directly with the BLM, with NDOW consultation, to develop a proponent-driven off-site mitigation program.

As part of its off-site compensatory mitigation, the Pan Mine has contributed approximately \$1.7 million toward five years of greater sage-grouse study conducted by the U.S. Geological Survey. As provided in the FEIS, the mine operator receives a fifty percent credit for funding contributed to the USGS study toward any required off-site compensatory mitigation.

The Greater Sage-Grouse Offset Mitigation Implementation Plan Agreement (BLM 2021), developed in coordination with GRP and the NDOW, includes the following key components:

- Complete off-site mitigation of impacted priority habitat management area (PHMA) on a three to one basis, meaning that for every one acre that is permanently impacted by the project within PHMA, the operator would restore or enhance three acres of habitat either adjacent to the project, within the Population Management Unit, or within adjacent PHMA habitats;
- Complete off-site mitigation of permanently impacted general habitat management area (GHMA) on a two to one basis; and
- Off-site mitigation will be initiated within one year of ground disturbance and completed within 10 years of ground disturbance (BLM 2013).

Table 20-3 summarizes the habitat restoration acres.

Table 20-3: Acres of Mapped PHMA and GHMA and Ratios for Habitat Restoration Using Acreages

| Acres PHMA | PHMA Acres Using 3:1<br>Mitigation Ratio | Acres GHMA | PHMA Acres Using 3:1<br>Mintigation Ratio | Total Acres |
|------------|------------------------------------------|------------|-------------------------------------------|-------------|
| 6.27       | 18.80                                    | 416.2      | 832.4                                     | 851.2       |

Source: BLM, 2021

The BLM calculated a cost per acre of \$419.67 for restoration treatment including monitoring. In January 2022, GRP issued a check to the BLM, Ely District, Bristlecone Field Office for \$178,611.55 for greater sage-grouse mitigation.

#### **Pygmy Rabbits**

No pygmy rabbits were found on the site during baseline studies or during any pre-construction clearance surveys conducted at the Pan Mine (Jensen 2023), though habitat is present and could be occupied (BLM 2013).

The ROD stipulates that pre-construction clearance surveys for pygmy rabbits will occur prior to any surface disturbance regardless of the season. If occupied pygmy rabbit habitat is identified during pre-construction clearance surveys and natal burrows are found, new disturbance will not occur within 200 feet of those areas. If disturbance of these areas is determined to be unavoidable, consultation with the appropriate BLM and NDOW wildlife biologists will occur to develop mitigation techniques. The pre-construction surveys only identified habitat in the southwest corner of the property, and this area has been avoided. However, future work in this area will require survey and potentially avoidance or consultation.

#### **Western Burrowing Owl**

Suitable habitat for western burrowing owl is present within the 2013 Plan Area though occurrences have not been documented. Construction activities could potentially destroy suitable and occupied nesting habitat for burrowing owls as well as displace individual owls.

The ROD stipulates that pre-construction clearance surveys for western burrowing owl will occur prior to any surface disturbance occurring from March 15 through August 31. If occupied western burrowing owl nesting territories are encountered, GRP will avoid the area within 0.25 miles of the active territory until a qualified biologist has determined the young have fledged, and the nesting territory has been abandoned for the season. If disturbance of these areas is determined to be unavoidable, consultation with the appropriate BLM and NDOW wildlife biologists will occur to develop mitigation techniques. No pre-construction clearance surveys to date have identified any occupied nesting territories, and no mitigation has been required.

#### **Golden Eagles and Raptors**

The golden eagle is listed as sensitive by the BLM and is protected by the State of Nevada. The species has no special status with the USFWS, although it is protected under the Migratory Bird Treaty Act and the Bald and Golden Eagle Protection Act. During agency consultation, the NDOW identified those golden eagle nests documented within the vicinity. Two golden eagle nests were identified within the northern portion of the 2013 Plan Area, and 39 were identified within a 10 mile buffer. Further, golden eagles were observed nesting during baseline surveys (BLM 2013). GRP developed the ECP (WRC 2021)

The bald eagle is listed as sensitive by the BLM and is protected by the State of Nevada. The 2013 Plan Area and adjacent areas serve as potential foraging habitat.

In 2021, GRP submitted an application to the USFWS for an eagle take permit valid for 30 years until July 2051 due to the potential for incidental disturbance take associated with mining activities over the life of the mine. This permit is currently under review.

The Bird and Bat Conservation Strategy describes the avian and bat protection measures for eagles, raptors, and other migratory bird and bat species. Annual nest surveys are conducted for the identified golden eagle and raptor nests within a 10-mile radius of the mine.

### **Migratory Birds and Bats**

Several migratory bird species were found at the Pan site during baseline surveys. The BLM considers all bat species to be sensitive; however, no nesting or roosting habitat were found on site, and no further evaluation is required by the ROD.

The ROD stipulates that GRP will fully implement and adhere to the construction techniques, design standards, and avian mortality reporting set forth in the Bird and Bat Conservation Strategy for raptors, western burrowing owls, migratory birds, and bats and the ECP for golden and bald eagles. Nesting surveys for migratory birds will be conducted within seven days of disturbance if disturbance needs to occur between April 1 and July 31. In coordination with the BLM, an avoidance buffer will be determined, and the nest will be avoided to prevent destruction or disturbance of nests until the birds are no longer present.

#### **Dark Kangaroo Mouse**

During pre-construction trapping for dark kangaroo mice in potentially suitable habitat within the 2013 Plan Area, occupied dark kangaroo mouse habitat was identified; however, this habitat is outside of the

disturbance area. Currently, no disturbance in these areas is proposed; however, consultation with the appropriate BLM and NDOW wildlife biologists will occur to develop avoidance strategies and mitigation techniques should disturbance be proposed in these areas in the future

#### 20.5.2 Wild Horses

To minimize the potential of wild horses accidentally entering the fenced portion of the 2013 Plan Area and not being able to be released easily, gates will be installed along the fence line at every corner. If the fence stretches longer than one mile, a gate will be placed at one-mile increments. Gates will also be placed on either side of cattle guards.

### 20.5.3 Cultural Resources

The BLM, Nevada State Historic Preservation Office, and Midway signed the Programmatic Agreement between BLM, Nevada State Historic Preservation Office, and the Advisory Council on Historic Preservation (Programmatic Agreement) in conjunction with Mt. Wheeler Power Company and the Lincoln Highway Association, Nevada that directed all activities associated with identifying and mitigating archaeological sites. This Programmatic Agreement, which has been completed and transferred to GRP, facilitates future archaeological work on site.

The Lincoln Highway/Hamilton Stage Road – US Highway 50, was developed over the Lincoln Highway route in the Project area. The dirt road which originally accessed the Pan Mine and traversed the south end of the North Pit may have been an unimproved alternative route for the Lincoln Highway from 1913 to 1926, prior to the development of US Highway 50. Studies of this section of the route have determined that parts are eligible, and some parts are not eligible, for listing on the National Register of Historic Places (NRHP). A treatment plan was prepared, submitted to the BLM, and all required mitigation of segments within the mine disturbance area have been completed. The plan included designating another similar road in the area as a mitigation route, providing signage to inform and direct travelers to the new route, and installing two culverts on the road. Concurrence from the BLM was obtained in January 2013, and the completion of the mitigation was completed in early spring 2013.

The Hamilton Stage Road was a Pony Express, stage, and freight route between Elko and Hamilton, Nevada. It was likely constructed, or became used, in the late 1800s and was outdated by the early 1900s. The exact routing in the area of the Pan Project is unknown. It is believed to be in the Newark Valley, and not in the area of the Pan Project.

Carbonari sites, burn piles, and habitations from Swiss/Italian and Chinese charcoal producers have been identified within and near the 2013 Plan Area. Cultural surveys have been conducted to identify, locate, and record the carbonari sites. Approximately 300 sites were identified. Of these, approximately 150 were determined eligible for listing. Fifteen sites (10 percent) were determined to require mitigation due to their ability to provide knowledge about the carbonari in the area. A plan to mitigate the sites through recordation prior to disturbance was developed and submitted to the BLM in January 2013. The sites were mitigated during the early spring 2013.

A total of 158 cultural resource sites were encountered during the project-specific inventories, including 22 previously recorded sites. The majority of the sites encountered were historic sites (137) with seven

prehistoric sites and 14 multi-component sites (both historic and prehistoric) also recorded. Of the 158 sites, 75 are considered eligible for the NRHP, one was unevaluated, and 82 are considered not eligible (BLM 2013).

Avoidance is the BLM-preferred treatment for preventing effects to any prehistoric or historic site eligible to the NRHP and ethno-historic properties or unevaluated cultural resources. If avoidance is not feasible because an area is needed for mine facilities or project operations or is not adequate to prevent adverse effects, GRP will undertake mitigation such as data recovery at the affected historic properties in accordance with the Programmatic Agreement. Development of a treatment plan, data recovery, archaeological documentation, and report preparation will be based on the Secretary of the Interior's Standards and Guidelines for Archaeology and Historic Preservation, 48 CFR 44716, as amended and annotated. GRP has not mitigated NRHP-eligible sites since 2020.

### 20.5.4 Mine Waste Characterization and Management

To assess the potential impact to groundwater during the operations, maintenance, and reclamation phases of mining, acid-base accounting (ABA) and metals leaching (ML) potential tests were performed on a variety of rock samples at the site. ABA-ML tests were performed on over 600 rock samples from the site. Based on the results of this testing, using parameters established by the NDEP and BLM guidelines, the majority of waste rock samples were found to be non-acid generating with an overall low to moderate potential for metals leaching (BLM 2013).

Material characterization of waste rock and ore are presented in a report titled Final Baseline Geochemistry Report, Pan Project, Nevada, dated June 2012, prepared by Interralogic, Inc. (Interralogic, 2012). An additional characterization plan, Sample Selection for Supplementary Humidity Cell Testing for the GRP Pan North Pit Waste Rock (HydroGeologica, 2017), was completed to better define rock geochemistry as part of the 2017 permit renewal application. The results of quarterly overburden, waste rock and ore characterization are provided to NDEP in quarterly and annual reports and are generally consistent with the results and findings included in the 2017 update.

Waste rock from the South Pan Pit has very low sulfur content (average sulfide sulfur less than 0.1 percent) and has a high neutralizing potential due to the high percentage of limestone (approximately 70 percent). The waste rock from the North Pan Pit has a higher percentage of samples considered potentially acid generating (PAG). Using Nevada BLM criteria, the majority of waste rock samples are considered non-acid generating, having both a net neutralization potential greater than 20 tons of material per thousand tons of calcium carbonate and a neutralization to acid potential ratio of greater than 3. Using the NDEP criteria, the percentage of samples considered non-acid generating increases to 90 percent. Results of meteoric water mobility procedure (MWMP) analyses showed a low metals-leaching potential, with only arsenic and thallium having some leaching potential. Each of these elements was slightly above its respective Nevada groundwater Profile I Reference Value of 0.010 mg/L and 0.002 mg/L, respectively. Consequently, the potential for acid rock drainage and/or metals leaching from the WRDA is considered low (BLM 2013).

GRP continues to monitor waste rock and ore geochemistry as stipulated by WPCP NEV2012107. During operations, waste rock grab samples are collected quarterly for each major rock type encountered and submitted for ABA and MWMP testing. Routine blasthole samples (minimum of 10 percent of the North

Pan Pit blastholes) are analyzed to identify PAG materials. Testing includes visual inspection and chemical analysis when indicated based on the visual inspection, paste pH, net acid generating pH, and LECO carbon/sulfur analyses.

### 20.5.5 Surface and Groundwater Characterization

The Pan Mine is located in the Central Region (Hydrographic Region 10) primarily in the Newark Valley (Hydrographic Basin 154), with a small portion in the northern end of the Railroad Valley Basin/Northern Part (Hydrographic Sub-Basin 173b). Both are terminal basins that drain to playas. The Newark Valley Hydrographic Basin is approximately 801 square miles in an area with no surface water inlets or outlets, and the Railroad Valley/Northern Part Hydrographic Sub-basin is approximately 2,140 square miles (BLM 2013).

No seeps or springs were identified in the 2013 Plan Area, and all streams are ephemeral (BLM 2013). No water quality analyses are available.

There are three aquifers of note in southern Newark Valley: a small, perched alluvial aquifer just west of the 2013 Plan Area; an extensive valley fill aquifer; and a deep, regional, carbonate bedrock aquifer. The depth to groundwater beneath the Plan Area ranges from 650 to 800 ft below ground surface and, is not expected to be encountered by the construction or mining activities (BLM 2013). Groundwater quality below the 2013 Plan Area was good, with a neutral pH and total dissolved solids ranging from 260 to 290 mg/L. Groundwater was relatively warm at 80 degrees Fahrenheit (BLM 2013).

Well DMW-1 characterizes the water quality in the deeper carbonate aquifer south of the property and four wells (MW-1, MW-2, MW-3, and MW-4) characterize the perched alluvial aquifer. An observation well (OBS-1) was installed prior to drilling the first production well. This well is used as a second deeper carbonate aquifer monitoring well on the north side of the property. Production well PW-1 monitors water quality downgradient of the plant, heap, and process ponds. Groundwater monitoring is continuing per WPCP NEV2012107.

### 20.5.6 Visual Resources

The exterior surfaces of any ancillary facilities visible from any project Key Observation Point (KOP) or Highway 50 have or will be painted with non-reflective shale green if located in pinyon-juniper vegetation or shadow gray if located in shrublands or other open areas. Other non-reflective colors of paint, as determined by the BLM, may be used in place of shale green or shadow gray.

## 20.6 Mercury Management

Mercury is one of the naturally occurring elements that is associated with gold mineralization at the Pan Mine. The Nevada Mercury Control Program (NMCP) is a Nevada regulatory program that requires mercury emissions controls on thermal units located at precious metal mines. The NMCP regulatory authority is found in NAC 445B.3611 to NAC 445B.3689. The program achieves mercury reduction via add-on control technologies. At this time, the NMCP regulations focus on the potential for mercury emissions from thermal processing units only. At the core of the NMCP is the Maximum Achievable Control Technology (NvMACT) designated by the NDEP in accordance with NAC 445B.3677. Pursuant

to NAC 445B.3625, owners or operators that operate, construct or modify a thermal unit that emits mercury must apply for, and obtain, a Mercury Operating Permit to Construct to apply the NvMACT. GRP maintains air permit AP1041-3302 to comply with the NAC.

As part of the Nevada Mercury Control Program, GRP currently uses chemical mercury suppressan(trade name Cherokee) in the processing circuit to sequester mercury in the leach pad thereby reduce mercury in the ADR. All thermal mercury units use use sulfur-impregnated carbon beds to reduce mercury emissions in off gas. The mercury vapor controls that meet the NvMACT in accordance with NAC 445B.3611.36899 are installed on all thermal devices. Activated carbon is changed out on a regular maintenance schedule; the used carbon is managed as hazardous waste. Stack testing of all mercury units is performed on annual basis to ensure that all mercury emissions are below permit limits.

Residual mercury in the gold-bearing material generated during electrowinning is removed during the retorting process. Elemental mercury is managed on site in accordance with the provisions of Section 5(g)(2)(D) of the Mercury Export Ban Act, as amended by the Frank Lautenberg Chemical Safety for the 21<sup>st</sup> Century Act. This act bans the export of elemental mercury from the United States as of January 1, 2013. The U.S. Department of Energy (DOE) must designate a facility(ies) for long-term management and storage of mercury generated in the United States and have it operational by January 1, 2013, which did not happen. The DOE is required to charge a fee to cover the cost of mercury storage. Until a federal facility(ies) is designated, elemental mercury is stored on site.

The Department of Energy published a final rule in the Federal Register to establish a fee for long-term management and storage of elemental mercury in accordance with the Mercury Export Ban Act effective January 22, 2020 (DOE 2019). The proposed rule initially established the fee for long-term management and storage of elemental mercury at the designated DOE storage facility as \$55,100 per metric ton, plus a receiving charge of \$3,250 per shipment. In response to comments received regarding the proposed rule, DOE adjusted the fee downward to \$37,000 per metric ton. In accordance with Mercury Export Ban Act, this fee may be adjusted annually (DOE 2019).

Elemental mercury is stored in 2,000-pound 'pigs'. Currently five full pigs are stored on site, and filling of a sixth pig is ongoing. The five full pigs are stored in Central Accumulation Area (Hazyard), which is covered, has concrete containment, and remains secured with a lock. The sixth pig is in a satellite accumulation area inside of the refinery.

### 20.7 Environmental Issues

Environmental issues identified in the 2013 EIS completed for the mine are mitigated by the requirements of the ROD as described for each resource below. At the time of publication, known environmental issues had been addressed and mitigated, as required.

## 20.8 Operating and Post Closure Requirements and Plans

### 20.8.1 Developed Operations

Mining began in May 2014 with pre-stripping and construction of the access road, South WRDA, and Phase 1 heap leach pad. Processing began when ore was first placed on the heap leach pad beginning

late in the third quarter of 2014, with first leach solution applied in the first quarter of 2015. GRP has consolidated the previously authorized South Pan and North Pan pits as well as the three satellite pits into the Pan Pit as of November 2022. GRP hauls waste rock to the authorized waste rock facilities via a series of haul roads. Ore is leached on the heap, and the solution is sent to the ADR/refining plant for gold recovery. The mine is authorized to disturb up to 3,246 acres for open pits, waste rock disposal areas, heaps, roads, yards, buildings, and other ancillary facilities as shown in Table 20-4.

Table 20-4: Summary of Authorized Phase 1 and Life-of-Mine Disturbance

| Mine Component               | Existing Phase<br>1 Disturbance<br>(acres) <sup>(1)</sup> | 2022 Proposed Phase 1 Disturbance (acres) | Total Phase1 Disturbance (acres)(1) | Subsequent Phases Disturbance (acres) <sup>(2)</sup> | Total<br>(acre) |
|------------------------------|-----------------------------------------------------------|-------------------------------------------|-------------------------------------|------------------------------------------------------|-----------------|
|                              |                                                           | Open Pits                                 |                                     |                                                      |                 |
| South Pan Pit                | 184                                                       | -184 <sup>(3)</sup>                       | -                                   | -                                                    | 0               |
| North Pan Pit                | 105                                                       | -105 <sup>(3)</sup>                       | -                                   | -                                                    | 0               |
| Black Stallion Pit           | 17                                                        | -17 <sup>(3)</sup>                        | -                                   | -                                                    | 0               |
| South Syncline Pit           | -                                                         | -                                         | -                                   | -                                                    | 0               |
| North Syncline Pit           | 12                                                        | -12 <sup>(3)</sup>                        | -                                   | -                                                    | 0               |
| Pan Pit                      | -                                                         | 936                                       | 936                                 | -                                                    | 936             |
|                              | \                                                         | Vaste Rock Disposal A                     | reas                                |                                                      |                 |
| South WRDA                   | 166                                                       | 81                                        | 247                                 | -                                                    | 247             |
| North West WRDA              | 126                                                       | 68                                        | 194                                 | -                                                    | 194             |
| North East WRDA              | 38                                                        | -1                                        | 37                                  | -                                                    | 37              |
|                              |                                                           | Other                                     |                                     |                                                      |                 |
| Roads <sup>(4)</sup>         | 159                                                       | -28                                       | 131                                 | -6 <sup>(9)</sup>                                    | 125             |
| Heap Leach Facility          | 180                                                       | 31                                        | 211                                 | 118                                                  | 329             |
| Process Facilities           | 15                                                        | -                                         | 15                                  | -                                                    | 15              |
| Process Ponds                | 14                                                        | -                                         | 14                                  | -                                                    | 14              |
| Yards <sup>(5)</sup>         | 52                                                        | -1                                        | 52                                  | 33                                                   | 85              |
| Growth Media Stockpile       | 27                                                        | -9                                        | 18                                  | 15                                                   | 3               |
| Borrow Areas                 | 75                                                        | -                                         | 75                                  | 135                                                  | 210             |
| Exploration <sup>(6)</sup>   | 209                                                       | -                                         | 209                                 | -                                                    | 209             |
| Ancillary Facilities(7)      | 3                                                         | -                                         | 3                                   | -2                                                   | 1               |
| Interfacility Disturbance(8) | 379                                                       | -128                                      | 251                                 | 560                                                  | 811             |
| Total                        | 1,761                                                     | 632                                       | 2,393                               | 853                                                  | 3,246           |

Source: Reclamation Permit No. 0350, 2022

<sup>(1)</sup> Current bonded acreage.

<sup>(2)</sup> Additional surety required to be posted before engaging in Subsequent Phase disturbance.

<sup>(3)</sup> The existing South, North, Black Stallion, South Syncline, and North Syncline pits will ultimately be incorporated into the new Pan Pit.

<sup>(4)</sup> Includes the access, haul and secondary roads.

<sup>(5)</sup> Includes production wells PW-1 and PW-2 and monitoring well pads.

<sup>(6)</sup> Reconciled existing exploration disturbance with current facilities to account for disturbance absorbed in other components.

<sup>&</sup>lt;sup>(7)</sup> Ancillary facilities include power supply, storm water controls, water supply and septic system, communication facilities, ore stockpile, monitoring wells and fencing.

The reclamation surety covers phased development (2,393 acres of disturbance) rather than the authorized 3,246 acres of disturbance. GRP will update the reclamation costs and surety either when disturbance approaches the bonded total or during the one-year phased bond reviews.

The pits, WRDAs, heap leach facility, roads, and ancillary facilities and a 69-kV transmission line may ultimately result in about 3,246 acres of total disturbance. Upon completion of mining, the operation will be closed and reclaimed in accordance with federal, state, and local requirements. Table 20-4 summarizes the bonded disturbance evaluated for Phase 1, and the total disturbance acreage for each component of the Pan Mine for complete build-out.

### 20.8.2 Period of Operations

The life of mine is estimated at five years until 2027, with additional time for associated closure, reclamation, and post-closure monitoring periods.

Heap leach drain down, closure, and reclamation is assumed to require approximately four years, ending in about Year 8 of the mine reclamation plan. The closure and reclamation of supporting facilities, and post-closure monitoring, will require approximately 30 years, bringing the entire Project life to approximately 38 years. Monitoring of the heap leach drain down may continue for up to 30 years following closure. Concurrent reclamation during active mining has been planned to begin as soon as practicable on areas where no further disturbance will occur, minimizing the need for post-mining reclamation.

### 20.8.3 Planned Operating Procedures

In addition to permit compliance, GRP has committed to many practices to prevent undue and unnecessary environmental degradation during the life of the mine. These practices listed below are part of the operating procedures included in the 2013 Plan of Operations and subsequent modifications or are parts of other permits:

- Fugitive dust control plan;
- Programmatic agreement;
- Groundwater monitoring plan;
- Stormwater pollution protection plan;
- Waste rock management plan;
- Quality assurance plan;
- Spill contingency and mitigation plan;
- Interim management plan;
- Petroleum-contaminated soils management plan;

<sup>(8)</sup> Interfacility Disturbance is the area between mining components that may be disturbed during construction, operations and reclamation/closure.

<sup>(9)</sup> Negative acreage value in Subsequent Phases column the result of a reduction in size of these facilities in future phases of the project.

- Bird and bat conservation strategy; and
- Eagle Conservation Plan.

### 20.9 Post-Performance or Reclamations Bonds

The NDEP-BMRR and the BLM issued reclamation permits (NVN-90444 and NDEP #0350) in 2013 and coordinate annual reviews. The Standardized Reclamation Cost Estimator (SRCE) is managed by NDEP and the bond (or surety) is held by the BLM. The bond is phased in that each year it is updated and recalculated to estimate the predicted impacts for three years beyond the present.

The SRCE, which totals \$18,729,598, was approved by the BLM and the NDEP in 2022 for Phase 1 disturbance of 2,393 acres.

## 20.10 Social and Community

The Pan Mine maintains support from the local community, counties (White Pine and Eureka), and state permitting authorities due to its capability to provide jobs and tax income. GRP attends the Duckwater Shoshone tribal meeting on a regular basis.

### 20.11 Mine Reclamation and Closure

Mine closure is defined as the chemical stabilization of process components. Nevada Administrative Code 445A.379 defines "stabilized" as "the condition which results when contaminants in a material are bound or contained so as to prevent them from degrading waters of the state under the environmental conditions that may be reasonably expected to exist at a site".

The heap leach facilities will be decommissioned in accordance with NDEP regulations and guidelines for closure. A tentative plan for permanent closure, as required by NAC 445A.398, was included in the water pollution control permit. A final plan for permanent closure, to include all proposed process components, will be prepared and submitted to the NDEP and the BLM two years prior to the anticipated final termination of the heap leach facility operation, per NAC 445A.447.

Chemical stabilization of the heap leach facilities is required to obtain permanent closure. GRP anticipates that the spent heap will be allowed to drain with no freshwater rinsing. Final details of heap neutralization and closure will be developed at least two years prior to closure pursuant to the requirements of NAC 445A.446 and NAC 445A.447.

GRP will undertake the following conceptual plan for process fluid stabilization:

- After cessation of leaching, process solution will be recirculated from the process ponds to the heap until drain down is less than active evaporation capacity;
- Process solution will be actively evaporated on the heap until drain down flows can be managed through passive evaporation in the process ponds;
- The heap will be regraded;

- Growth media (i.e. cover soil,) will be placed on the heap with the aim of limiting long-term flow from the heap to a de minimus quantity; and
- The pregnant process pond will be converted to an evapotranspiration (ET) cell to store and release heap drain down through ET until de minimus flow is achieved, at which time the ET cell will be closed.

The operational monitoring data for drain down flows and chemistry will be used to confirm modeled flows and submitted as part of the final plan for permanent closure at least two years prior to the closure of the heap leach facility.

## 20.12 Reclamation Measures During Operations and Project Closure

Reclamation of disturbed areas resulting from activities outlined in the 2013 Plan have and will continue to be completed in accordance with BLM and NDEP-BMRR regulations. The purpose of Subpart 43 CFR § 3809 – Surface Management, is to prevent unnecessary or undue degradation of public lands by operations authorized under the mining laws. This subpart establishes procedures and standards to ensure that operators and mining claimants meet this responsibility and provide for the maximum possible coordination with appropriate state agencies. The NDEP requires that a reclamation plan be developed for any new exploration or mining project and for expansions of existing operations (NAC 519A).

GRP anticipates that, with the exception of the open pits for which reclamation exemptions under NAC 519A.250 were obtained, surface mine components and exploration will be reclaimed and revegetated according to the approved reclamation plan. The goals of the reclamation plan are to:

- Minimize surface disturbance and environmental impact to the extent practicable;
- Create diverse, reclaimed landscapes to promote vegetation and habitat diversity and hydrologic stability over time;
- Return mine-related disturbances to productive post-mining land uses that emphasize livestock grazing, greater sage-grouse habitat, wild horse use, and wildlife use with dispersed recreation and mineral exploration usage;
- Comply with applicable state and federal environmental rules and regulations;
- Limit visual impacts; and,
- Limit and/or eliminate long-term maintenance following reclamation to the extent practical.

These goals will be achieved by meeting the primary objectives listed below:

- Establish stable surface topographic and hydrologic conditions during mining and after reclamation
  that are compatible with the surrounding landscape by designing stable fill and cut slopes, controlling
  erosion, and managing surface water and earthen materials to minimize water quality impacts;
- Establish a stable, diverse and self-sustaining plant community through removing and redistributing suitable plant growth media on disturbed areas and by the seeding and planting of native and adapted plant species;

- Reclaim facilities that are no longer needed for operations as soon as practicable during the production period by implementing concurrent reclamation;
- Integrate mining plans with soil, water and waste management and reclamation plans;
- Separate process water and contact water from non-contact (i.e., un-impacted) water; and
- Incorporate operational stormwater management facilities into the design of closure stormwater.

GRP is committed to operating in a manner that protects, and where possible enhances, the environmental and social values of the ecosystems and communities within which it operates. To this end, GRP has a reclamation plan to reclaim the land to productive post-mining land uses. Such voluntary measures include:

- Live-handling of plant growth media, including removal and direct placement of plant growth media on surfaces that have been prepared for reclamation without stockpiling;
- Construction of WRDAs using stable design principles;
- Salvage and redistribution of woody debris for final reclamation;
- Contouring the top of the spent heap leach pad to create more natural forms and lines; and
- A revegetation plan that includes sowing seed and planting shrub seedlings according to landscape position and aspect.

## 20.12.1 Reclamation of Open Pits

Pit berms will be constructed along the pit perimeters where necessary to preclude public access and deter livestock, for the pits that will remain as post-mining features. Groundwater conditions at the Pan Mine indicate the regional water table lies about 300 ft below the bottom of both pits. Groundwater in not anticipated to enter the pit either during operations or post closure. Depending upon the balance between surface water runoff and evaporation, there is the potential that the pits may temporarily accumulate surface water during spring melt and/or large storm events. Precipitation-related water that could accumulate in the bottom of the pits and/or benches will be temporary given the high net evaporation (51.46 inches) compared to precipitation (7.55 inches) (SRK 2022). The pits are exempted from backfilling per NAC 519A.250.

### 20.12.2 Reclamation of WRDAs

The goal of the WRDA design is to establish a sustainable landform. The WRDA will be constructed and reclaimed to slopes of 3H:1V and concurrently reclaimed where practicable. Erosion during an initial equilibration period is anticipated and considered acceptable, as long as the erosion rate stabilizes to a sufficiently low long-term rate value.

The WRDA soil cover is intended to be non-erosive, or, for segments that undergo erosion, able to self-armor in a way that halts erosion before waste rock is exposed or free drainage is compromised. Concurrent reclamation of the WRDA during the production period will allow mine managers to monitor performance of the design, retrofit eroded areas as needed, and adjust yet-to-be constructed segments, as part of an adaptive management strategy.

Waste rock will be placed in accordance with the Waste Rock Management Plan (Interralogic, 2013). Material determined to be PAG that is in manageable pods in the pit will be isolated in the central portion of the Northeast and Northwest WRDAs, as needed. The final lift over the isolated PAG material in the Northeast and Northwest WRDAs will consist of approximately 2.5 ft of high carbonate material using waste rock set aside during mining, with an overlying vegetated growth media cover 12 inches thick to minimize the long-term potential for acid generation and metals leaching. GRP has committed to covering the PAG material within the WRDAs with 6.5 ft of non-PAG run-of-mine waste in addition to the 2.5 ft of high-carbonate material and 12 inches of growth media, for a total cover thickness of 10 ft.

### 20.12.3 Reclamation of the Heap Leach Facility

The heap leach pad will be constructed in lifts set on a 3H:1V (horizontal to vertical) balance line such that the overall reclaimed slope angle will be approximately 3H:1V. Following the end of heap leaching operations, drain down, and closure as described above, each heap lift will be regraded to the final slope configuration of approximately 3H:1V. This design will mitigate aesthetic impacts, provide stability, promote run-off, and reduce infiltration.

When no longer required for evaporation of fluids, the surface solution distribution piping will be removed. The side-slopes of the heap will be graded, so the final toe is within the interior crest of the perimeter berm. A store and release or ET cover will be installed on the regraded heap surface to limit infiltration of precipitation into the spent ore. The soil cover on the spent heap will allow retention of water in the cover material during snow melt and precipitation to establish grass and herbaceous vegetation. By retaining the water in the soil cover for plant uptake and ET, the amount of water infiltrating is reduced, thus minimizing the drain down solution and steady—state seepage that will need to be managed during closure and post-closure. The recontoured heap will be covered with 2.5-ft of growth media, (i.e., cover soil.) Midway conducted vadose zone modeling of potential cover soil types from within the mine disturbance and borrow areas. The vadose zone modeling indicated that for representative potential cover soil types, a 2.5 ft thick layer of cover soil will limit infiltration through the cover to one percent under average and wet climate conditions.

Reclamation of the heaps will be carried out following growth media placement as described above. The Grassland/Erosion Control seed mixture will be applied to the heap. The working slopes and the ability to operate equipment safely will determine the method of seeding. Stormwater diversion structures will be constructed upgradient of the heaps to prevent impacts from stormwater run-on. These structures will be maintained to minimize erosion over the long term.

## 20.13 Closure Monitoring

During operations, annual qualitative monitoring of key indicators of site stability of concurrently reclaimed areas will be conducted. These key stability indicators may include vegetation, surface erosion, sedimentation, and slope stability parameters. If specified performance guidelines are not satisfied, then appropriate maintenance activities will be implemented. Following completion of concurrent reclamation activities and until such time that a final bond release is attained, maintenance activities will occur as necessary to satisfy performance guidelines. Maintenance activities may include one or more of the following:

- Sediment removal from sediment ponds, stormwater drainage channels, and diversion as necessary to maintain their design capacity;
- The function of temporary erosion control best management practices such as silt fences and straw bales will be maintained. These best management practices will be removed when no longer essential for erosion control;
- Diverting surface water away from reclaimed areas where erosion jeopardizes attainment of reclamation standards;
- Stabilization of rills, gullies, other erosion features or slope failures that have exposed mine waste;
- Noxious weed control; and
- Reseeding or re-application of reclamation treatments will occur in areas where it is determined through monitoring and agency consultation that reclamation has not yet met reclamation standards.

Quantitative reclamation monitoring to measure compliance with the revegetation success criteria will begin during the first growing season after final reclamation is completed and will continue for a minimum of three years or until the reclamation success criteria are achieved. Qualitative monitoring of key indicators of site stability will continue, and the reclamation performance management guidelines will apply during this time. The reclamation bond release criteria will be applied to the data collected in the third year following reclamation. Data from previous years will be used to determine management needs. Revegetation success will be determined based on the NDEP-BMRR guidelines contained in the document Attachment B–Nevada Guidelines for Successful Revegetation for the *Nevada Division of Environmental Protection, the Bureau of Land Management, and the USDA Forest Service* (NDEP, BLM, and USFS, 2016).

GRP submits an annual report on or before April 15 of each year to the BLM and NDEP for the preceding calendar year. The annual reports contain descriptions of the reclamation activities completed during the previous year. The annual report will also include a summary of areas reclaimed and a discussion of the general vegetation performance, surface erosion status, slope stability status, and corrective actions completed and/or proposed.

The ET cell and associated downgradient monitoring wells will continue to be monitored for 30 years following construction of the ET cell.

### 20.14 Reclamation Bond and Closure Cost Estimate

### 20.14.1 Agency-Approved Reclamation Surety

Per NAC 519A.350, GRP is required to file a reclamation surety with the NDEP or a federal land management agency, as applicable, to ensure that reclamation will be completed on privately owned and federal land. The 2022 Pan Mine reclamation cost estimate was calculated using the Nevada Standardized Reclamation Cost Estimator (SRCE) 1.4.1 build 17b. The SRCE is an estimation tool for the calculation of bond amounts required to reclaim land that is no longer used for exploration, mining, or processing ore. Cost inputs for the SRCE model are provided from the NDEP's Cost Data File, Mobilization/Demobilization Cost Calculator, and the Nevada Process Fluids Cost Estimator (PFCE).

The cost data are updated annually by the BLM and the NDEP. Labor costs are based on Davis Bacon wage rates, and equipment and supply costs are based on regional rates. The SRCE costs are predicated on the reclamation being completed by a third party under agency direction.

The SRCE addresses the costs to regrade disturbed landforms, place growth media, seed with an agency-approved seed mix, and monitor for reclamation success. The demolition of buildings and foundations, removal of power lines and fences, and stormwater and erosion controls are also addressed. Monitoring of surface water quality and reclamation success and construction management costs are calculated. Other costs related to the management of draindown solution from the heap for interim fluid management and process fluid stabilization are calculated in the PFCE. The PFCE utilizes standardized labor crews, equipment, materials, and unit costs that are also updated annually to calculate bond amounts based on the specific heap leach pad or tailings storage facility physical parameters, volume of fluids, and timeframes required for the interim fluid management and process fluid stabilization. The Heap Leach Drain Down Estimator is used to estimate the timeframes and volumes of fluids to be managed.

The most recent SRCE was prepared by Haley & Aldrich, Inc. (H&A 2022) using the SRCE Version 1.4.1 build 17b and approved by the NDEP on October 10, 2022 (NDEP 2022); SRK did not validate the SRCE cost model provided by GRP.

The SRCE calculates the direct costs to reclaim a mine to achieve productive post-mining land uses. The SRCE also includes indirect costs for the managing agency to implement closure; these indirect costs added 35 percent of the Pan Mine direct costs to the total. This number includes all closure and post-closure monitoring plus contingencies, should the agency need to have the work done by a third-party contractor.

The SRCE totals \$18,729,598 and was approved by both the BLM and the NDEP in 2022 for Phase 1 disturbance of 2,393 acres.

### 20.14.2 Closure Cost Estimate

Internal reclamation and closure costs were estimated using the bonding reclamation cost estimate described in Section 20.14.1 and the 2022 Asset Retirement Obligation Estimate and Cost Model for Pan Mine (H&A 2023). The two models, which include LOM facilities, were reviewed and compared to approximate inputs generated for the mine plan. Reclamation and closure costs were estimated to be approximately \$17 million. This estimate is based on facilities that vary from the prior LOM facilities in the H&A models.

# 21 Capital and Operating Costs

Estimation of capital and operating costs is inherently a forward-looking exercise. These estimates rely upon a range of assumptions and forecasts that are subject to change depending upon macroeconomic conditions, operating strategy and new data collected through future operations. Therefore, changes in these forward-looking assumptions can result in capital and operating costs that deviate materially from the costs forecast herein.

## 21.1 Capital Cost Estimates

The Pan Mine is constructed and is currently operating. For the purposes of this Technical Report, all capital spent to date is considered a sunk cost. Additional capital is required to sustain the mine through the remaining mine life. Costs are also included for an access road, crushing and agglomeration belts leach pad construction, reclamation and closure, as well as sustaining capital. Table 21-1 summarizes these costs.

**Table 21-1: Capital Cost Summary** 

| Description                                                   | Cost (US\$ 000's) |
|---------------------------------------------------------------|-------------------|
| Mine                                                          | 200               |
| Process                                                       | 6,500             |
| Leach pads                                                    | 3,885             |
| Reclamation & closure, post closure monitoring, bond recovery | 11,175            |
| Sustaining capital                                            | 480               |
| Total                                                         | 22,240            |

Source: SRK, 2023

## 21.1.1 Basis for Capital Cost Estimates

The basis for capital cost estimates is provided by vendor and supplier quotes, as well as historical data gathered during recent leach pad construction cost estimates.

### 21.1.2 Mine Capital Cost

Mine capital costs only consist of an in-pit access road. The cost is estimated by SRK. (US\$200K). Table 21-2 lists the mine capital cost.

**Table 21-2: Mine Capital Cost** 

| Description         | Cost (US\$ 000's) |
|---------------------|-------------------|
| Phase 6 access road | 200               |
| Total               | 200               |

Source SRK, 2023

### 21.1.3 Process Capital Cost

Process capital costs include equipment for a conveying and belt agglomeration system that will replace the current system of truck haulage to the pad. Table 21-3 lists the process capital costs.

**Table 21-3: Process Capital Cost** 

| Description                   | Cost (US\$ 000's) |
|-------------------------------|-------------------|
| Crushing and conveying system | 6,500             |
| Total                         | 6,500             |

Source SRK, 2023

### 21.1.4 Leach Pad Capital Cost

Additional leach pad will be constructed to hold the Reserve tonnage. Phase 3B represents the additional leach pad space that will be constructed. Table 21-4 lists the leach pad costs.

**Table 21-4: Leach Pad Capital Cost** 

| Description             | Cost (US\$ 000's) |
|-------------------------|-------------------|
| Pan Phase 3B Heap Leach | 3,885             |
| Total                   | 3,885             |

Source SRK, 2023

### 21.1.5 Reclamation and Closure Costs

Reclamation and closure costs (US\$11.175M) include costs for reclamation and closure, post closure monitoring. offset by reclamation bond recovery. Reclamation and closure cost is (US\$17.0M), post closure monitoring cost is (US\$675K), offset by recovery of the reclamation bond deposit (US\$6.5M). Reclamation and closure costs are discussed in Section 20 of this report.

### 21.1.6 Sustaining Capital

Sustaining capital is assumed to be (US\$120K) per year from 2023 through 2026 resulting in a total of (US\$480K) through the mine life.

## 21.2 Operating Cost Estimates

Total operating cost estimates for the Project are presented in Table 21-5. The unit operating costs are based on total ore stacked on the leach pad of 21,812 Mtons. Total mined material is 66,149 Mtons, of which 44,377 Mtons is waste and 21,812 Mtons is ore. The estimated mine life is five years.

**Table 21-5: Life on Mine Operating Cost Summary** 

| Operating Costs | (US\$ 000's) | US\$/ton-ore |
|-----------------|--------------|--------------|
| Mining          | 148,763      | 6.820        |
| Processing      | 78,178       | 3.584        |
| G&A             | 29,914       | 1.371        |
| Total Operating | 256,855      | 11.776       |

## 21.2.1 Basis for Operating Cost Estimates

Mining costs were dictated by the equipment selected and the conditions of the mine environment. The mine is presently operating using a contractor for all mining activities. Mining costs were developed based on the current mining contract and historic costs. Historic costs used for other mining costs which include the mine's support personnel are based on the period from October 1, 2021 through September 30, 2022. Mining is scheduled through 2027.

Processing costs are developed from historical costs, primarily from the period of October 1, 2021 through September 30, 2022. Processing is schedule through 2028, however costs are reduced in 2028. Closure costs begin in 2029.

General and Administrative (G&A) costs are developed from historical costs, primarily from the period of October 1, 2021 through September 30, 2022. General and Administrative costs remain through 2027 are reduced in 2028 when processing ends.

### 21.2.2 Mining Cost Estimates

The Pan operation currently employs a contract miner for all mining activities. The contractor supplies all the mining and support equipment, personnel to operate the equipment and direct supervision. The contract is a Time and Materials (T&M) contract in which the contractor supplies the equipment, personnel and works under the direction of the Pan Mine. This type of contract gives Pan Mine the greatest flexibility regarding where the contractor will operate and the production rate. The current mine schedule is on a 7 day per week, 52 weeks per year schedule. The mine runs 24 hours per day on Monday through Thursday, and 12 hours per day on Friday through Sunday. Drilling, blasting and loader costs are based on historical unit tonnage rates. Hauling costs are derived from the contractor's current hourly rates, as well as truck hours derived from MinePlan® Schedule Optimizer (MPSO), simulation software. Haulage times are based truck cycle time from individual pits to waste dumps and the ROM ore stockpile. Support equipment costs are based on the mine schedule and current contractor hourly rates. Equipment hourly rates were supplied by Calibre based on the current contract which was renewed in September 2022.

Table 21-6 shows the total mine production cost.

**Table 21-6: Mine Production Costs** 

| Description        | Cost    | Unit         |
|--------------------|---------|--------------|
| LOM mining Cost    | 148.763 | US\$ 000's   |
| Cost per ton mined | 2.249   | \$/ton mined |
| Cost per ton ore   | 6.820   | \$/ton ore   |

## 21.2.3 Contractor Mining Cost Estimates

Contractor mining costs include fixed and variable costs and outside maintenance. Table 21-7 lists the total fixed and variable cost.

**Table 21-7: Contractor Mining Cost** 

| Item           | (US\$ 000's) | US\$/ton Mined |
|----------------|--------------|----------------|
| Fixed costs    | 18,949       | 0.286          |
| Variable costs | 81,807       | 1.237          |
| Total          | 100,756      | 1.523          |

Source: SRK, 2023

Major fixed costs include salary and wages, outside maintenance and equipment charge. All fixed costs are calculated on a monthly basis. Table **21-8** lists the fixed mining costs.

**Table 21-8: Contractor Fixed Mining Cost** 

| Item                      | LOM (US\$ 000's) | US\$/ton Mined |
|---------------------------|------------------|----------------|
| Salary and wages          | 8,316            | 0.126          |
| Equipment charge          | 3,029            | 0.046          |
| ISP (outside maintenance) | 4,574            | 0.069          |
| LOA charge                | 2,198            | 0.032          |
| Insurance charge          | 832              | 0.013          |
| Total                     | 18,949           | 0.286          |

Source: SRK, 2023

The major mining cost is haulage which comprises approximately 46% of the variable cost. As mentioned previously in section 21.2.2 truck hours are generated from simulation software. Drilling and loading hours are based on current loading cycle times and penetration rates. Support equipment hours are based on the current schedule. Table 21-9 lists the contractor variable cost.

**Table 21-9: Contractor Variable Mining Cost** 

| Item                           | LOM (US\$ 000's) | US\$/ton Mined |
|--------------------------------|------------------|----------------|
| Drilling Ore and Waste         | 8,984            | 0.136          |
| Blasting Ore and Waste         | 4,530            | 0.068          |
| Loading Ore and Waste          | 11,155           | 0.169          |
| Hauling Ore and Waste          | 37,605           | 0.568          |
| Support Equipment              | 19,533           | 0.295          |
| Total Contractor Variable Cost | 81,807           | 1.237          |

In addition to the contractor cost, Pan is responsible for all engineering services including mine planning and survey, blasthole sampling, ore control and overall supervision of the contractor's operation. Table 21-10 lists the owner total cost for owner mining.

**Table 21-10: Owner Mining Cost Summary** 

| Item     | LOM (US\$ 000's) | US\$/ton Mined |
|----------|------------------|----------------|
| Fixed    | 10,621           | 0.161          |
| Variable | 37,387           | 0.565          |
| Total    | 48,007           | 0.726          |

Source: SRK, 2023

Salary and wages comprise 85% of the cost. Table 21-11 lists the owner fixed cost.

**Table 21-11: Owner Fixed Cost Summary** 

| Item                            | LOM (US\$ 000's) | US\$/ton Mined |
|---------------------------------|------------------|----------------|
| Salary & Wages                  | 9,088            | 0.137          |
| Parts and Non-Capital Equipment | 538              | 0.008          |
| Fees, Travel & Other Admin      | 994              | 0.015          |
| Total Owner Fixed Cost          | 10,621           | 0.161          |

Source: SRK, 2023

Diesel, ammonium nitrate and blasting down the hole service is provided by the owner and is calculated by a variable cost per ton mined. Table 21-12 lists the owner variable cost.

**Table 21-12: Owner Variable Cost Summary** 

| Item                               | LOM (US\$ 000's) | US\$/ton Mined |
|------------------------------------|------------------|----------------|
| Diesel                             | 23,887           | 0.361          |
| Ammonium Nitrate                   | 7,477            | 0.113          |
| Blasting Down the Hole Service     | 4,564            | 0.069          |
| Consumables                        | 1,459            | 0.022          |
| Total Variable Owner Variable Cost | 37,387           | 0.565          |

Source: SRK, 2023

### 21.2.4 Processing Cost Estimates

The major processing cost elements include fixed and variable costs, as well as costs for rehandle of crushed, stockpiled material through the first quarter of 2024; until an agglomeration system is constructed. Fixed costs include salary and wages, non-capital, fees, travel related, other admin cost and taxes. Variable costs consist of chemical reagents, consumables, parts, fuel and lubricants, services and stockpile rehandle. The fixed and variable costs represent the cost to crush, agglomerate, leach and process ore. Rehandle costs represent the cost for the mining contractor to load and haul ore from a crushed ore stockpile to the pad through the 1st quarter of 2024. Variable costs are reduced for rehandle and lime. The rehandle cost is reduced 50% from the contractor haulage cost and lime addition is reduced to US\$0.49/ton-ore. Cement addition is started in the 2nd quarter of 2024 at a cost of US\$0.52/ton-ore. The LOM operating cost to process 21.8 Mton of ore is US\$78.2 million, or US\$3.58/ton ore processed. Table 21-13 shows the summarized process production costs.

**Table 21-13: Process Production Costs** 

| Item                  | LOM (US\$ 000's) | US\$/ton-ore processed |
|-----------------------|------------------|------------------------|
| Fixed                 | 24,277           | 1.113                  |
| Variable              | 53,900           | 2.471                  |
| Total Processing Cost | 78,178           | 3.584                  |

Source: SRK, 2023

Process fixed costs used historical data as described in Section 21.2.1. Fixed costs primarily consist of labor, which is assumed to be relatively fixed throughout the mine and crushing life. In 2028 the labor is reduced by 50% of 2027 costs and non-capital equipment rents and leases, as well as fees, travel and other admin are left at 2027 cost levels. Table 21-14 summarizes the fixed processing costs for the life of mine.

Table 21-14: Fixed Process Production Costs

| Item                                   | LOM (US\$ 000's) | US\$/ton-ore processed |
|----------------------------------------|------------------|------------------------|
| Labor Salary, Wages & Employee Related | 23,694           | 1.086                  |
| Non-Capital Equipment Rents and Leases | 274              | 0.013                  |
| Fees, Travel and Other Admin           | 310              | 0.014                  |
| Total Fixed Processing Cost            | 24,277           | 1.113                  |

Source: SRK, 2023

Variable process costs are also based on historical costs as described in Section 21.2.1. Variable costs are calculated using actual costs and tonnages for the period of October 1, 2021 through September 30, 2022. All costs are based on the mining and crushing schedule through 2027. In 2028 carbon, cyanide, consumables, drip emitters, propane and steel/tires/utilities are reduced by 50%. While power is reduced by 25%. Table 21-15 lists the variable process production costs through the life of mine.

**Table 21-15: Variable Process Production Costs** 

| Item                                    | LOM (US\$ 000's) | US\$/ton-ore processed |
|-----------------------------------------|------------------|------------------------|
| Acids                                   | 436              | 0.020                  |
| Anti-Scalents                           | 1,526            | 0.070                  |
| Carbon                                  | 240              | 0.011                  |
| Caustic Soda                            | 654              | 0.030                  |
| Cyanide                                 | 12,977           | 0.591                  |
| Cement                                  | 8,389            | 0.385                  |
| Consumables - Other                     | 481              | 0.022                  |
| Lime                                    | 2,783            | 0.128                  |
| Drip Emitters                           | 240              | 0.011                  |
| Ground Engaging Tools                   | 436              | 0.020                  |
| Lab Supplies/Crucibles                  | 245              | 0.011                  |
| Propane/LPG                             | 1,201            | 0.055                  |
| Steel, Tires, Utilities                 | 1,527            | 0.070                  |
| Welding Supplies Consumables            | 654              | 0.030                  |
| Electric Power                          | 2,765            | 0.127                  |
| Conveyors & Belting                     | 1,309            | 0.060                  |
| Electrical Motors & Instrumentation     | 436              | 0.020                  |
| Pumps and Other Parts                   | 436              | 0.020                  |
| Tanks/Vessels Screens                   | 436              | 0.020                  |
| Transmissions                           | 218              | 0.010                  |
| Repairs & Maintenance & Allocated Costs | 654              | 0.030                  |
| Diesel/Oil & Lubricants                 | 4,799            | 0.221                  |
| Contracted Maintenance                  | 1,345            | 0.062                  |
| Maintenance & Repairs                   | 3,556            | 0.165                  |
| Crusher Stockpile Rehandle              | 6,158            | 0.282                  |
| Total Variable Processing Cost          | 53,900           | 2.471                  |

### 21.2.5 General and Administrative Cost Estimate

General and Administrative costs represent the Pan Mine actual costs based on the current manpower level which are expected to remain relatively constant through the life of the operation. The costs were assumed to be fixed through the end of mining and crushing 2027. In 2028 general and administrative costs are reduced by 25%. Closure costs begin in 2029. Life of mine general and administrative costs are provided in Table 21-16.

**Table 21-16: General and Administrative Costs** 

| Item                                                  | LOM (US\$ 000's) | US\$/ton-ore processed |
|-------------------------------------------------------|------------------|------------------------|
| Salary Wages & Employee Related                       | 12,213           | 0.560                  |
| Safety & Environmental                                | 3,933            | 0.180                  |
| Non-Capital Equipment                                 | 828              | 0.038                  |
| Rents & Operating Leases                              | 1,104            | 0.051                  |
| Services                                              | 1,518            | 0.070                  |
| Fees and Dues                                         | 2,484            | 0.114                  |
| Travel Related                                        | 213              | 0.010                  |
| Other Admin Costs                                     | 3,984            | 0.183                  |
| Variable Cost (Consumables, Parts, Fuel & Lubricants) | 3,637            | 0.165                  |
| Total General and Administrative Cost                 | 29,914           | 1.371                  |

# 22 Economic Analysis

Under NI 43-101 rules, producing issuers may exclude the information required in Section 22 Economic Analysis on properties currently in production, unless the Technical Report includes a material expansion of current production. The Pan mine is currently in production, and material expansion is not being planned. SRK completed an economic analysis, and the outcome is a positive cash flow that supports the statement of mineral reserves.

# 23 Adjacent Properties

The Pan Mine is situated to the south of the Battle Mountain – Eureka Carlin-type gold trend. This trend has been producing substantial mining projects for decades. Along with the Pan Mine Property, Calibre also has the Gold Rock Project in the southern portion of this trend located approximately 8 miles to the southeast of the Pan Mine. Other notable projects include the Bald Mountain Gold Mine located 45 miles north of the Pan Mine. There also a number of historical mines near the Pan Mine owned by a number of other companies including Mt Hamilton 10 miles to the southeast, Green Springs located 14 miles southeast. Illipah 19 miles to the northwest, Lookout Mountain (Windfall) 16.5 miles to the northwest and Ruby Hill 21 miles to the northwest near Eureka (Figure 23-1).

The authors of this report have been unable to verify the information pertaining to adjacent properties in the area. No inference is made in this report to similarities between the Pan Mine Property and adjacent properties discussed below.

### 23.1 Gold Rock

Calibre, formerly Fiore, acquired the Pan Gold Mine thru the bankruptcy process in May of 2016 at the same time it also acquired the Gold Rock Project. Calibre owns the Gold Rock Project located approximately 8.5 miles southeast of the Pan Mine. Much like the Pan Mine, the Gold Rock Deposit is a sedimentary hosted Carlin-style gold deposit. A recent Preliminary Economic Assessment (PEA) released in May 2020 based upon drilling in 2019 and historical drilling resulted in an updated resource model with an Indicated Mineral Resource of 20.94 million tons at 0.019 oz/ton Au for 403,000 ounces of gold and an Inferred Mineral Resource of 3.336 million tons at 0.025 oz/ton Au for 84,300 ounces of gold, using a lower cut-off grade of 0.003 oz/st Au (APEX 2021). The Gold Rock PEA provided a positive economic results and further work was recommended and is being conducted. The geology of the Gold Rock Property is dominated by Devonian through Mississippian limestone, shale, and sandstone. These rock types are exposed in a series of north-trending ridges that represent stacked, easterly-directed thrust blocks and low amplitude, open to tight folds. Gold mineralization is interpreted to postdate thrusting and folding. Mineralization at Gold Rock is localized in the apex and limbs of the slightly overturned, fault-bounded, EZ Junior Anticline. The primary host is the Joana Limestone, but mineralization is also hosted in the overlying Chainman Formation in calcareous shale and carbonate units. Scattered, minor, inconsistent mineralization also occurs in the underlying Pilot Formation. Gold mineralization was exposed at the pre-mining surface of the historical EZ Junior open pit. Gold mineralization at the Gold Rock Deposit occurs as disseminated, micrometer-scale grains hosted in sedimentary rock, usually impure calcareous siltstones and limestones. Mineralization is both structurally and stratigraphically controlled, occurring in vertical and sub-vertical feeder faults and cross faults, brecciated areas of folds, and parallel to bedding in favorable lithological units.

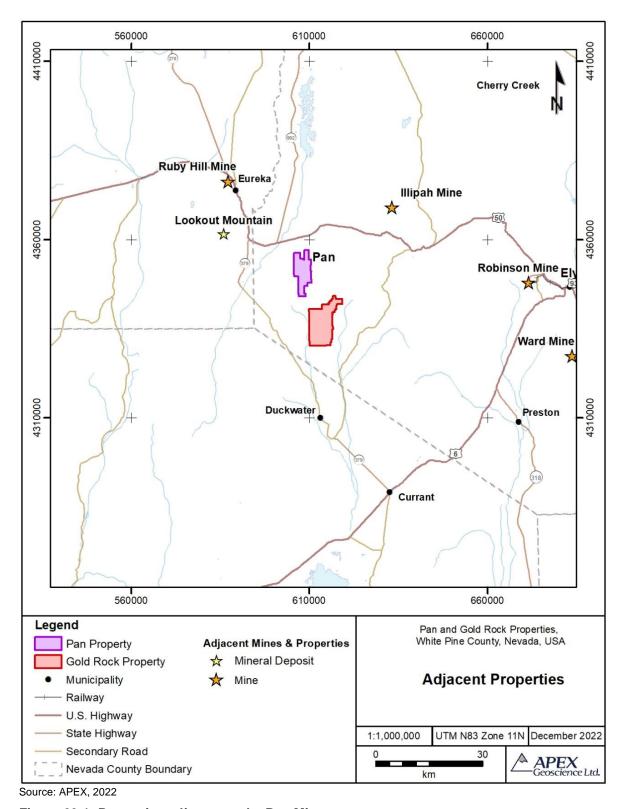



Figure 23-1: Properties adjacent to the Pan Mine

#### 23.2 Bald Mountain Mine

The Bald Mountain mine lies approximately 45 miles north of the Pan Mine. The mine is located on the southern end of the Battle Mountain – Eureka trend. Bald Mountain is a Carlin-style deposit with disseminated, micron sized gold hosted in calcareous shales and limestones. Exploration at Bald Mountain began in 1977 with production starting in the early 1980's. During 1995, the 1-5 open pit produced 5.6 million tons of ore grading 0.063 oz/ton Au (Western Mining History, 2017). As of 2021, reserves at Bald Mountain – proven and probable – were 798,000 ounces of gold within 45.173 million tons (40.98 million tonnes) at 0.018 opt (0.6 g/t) (Table 23-1). Also, a significant measured and indicated gold resource has been identified (Kinross Annual Report, 2021).

Table 23-1: 2021 Bald Mountain Reserve Statement

| Category            | Tons (000's) | Tonnes (000's) | Au Grade (oz/t) | Au Grade (g/t) | Contained<br>Ounces (Au) |
|---------------------|--------------|----------------|-----------------|----------------|--------------------------|
| Proven              | 0            | 0              | NA              | NA             | 0                        |
| Probable            | 45,173       | 40,980         | 0.018           | 0.6            | 798,000                  |
| Proven and Probable | 45,173       | 40,980         | 0.018           | 0.6            | 798,000                  |

Source: Kinross Annual Report, 2021

## 23.3 Green Springs Mine

The historical Green Springs Mine is located 14 miles southeast of the Pan Mine within the White Pine Mining District. The historical Green Springs Mine is a gold and silver Carlin-style deposit located on the southern end of the Battle Mountain – Eureka trend. The Green Springs mine has produced 1.2 million tons of ore at 0.061 opt Au since the 1980's (Ely Gold, 2013).

Mineralization at the historical Green Springs Mine is dominantly found within the Joana Limestone; however, mineralization has also been found in the Pilot Shale. Exploration at the Green Springs Mine is ongoing to expand the potential of the property. Recent exploration by Colorado Resources Ltd. has yielded up to 135 ft of 0.094 oz/ton Au from the E Zone at the Chainman – Joana Limestone contact south of the historical mine workings (Colorado Resources Ltd., 2017).

#### 23.4 Mount Hamilton Mine

Waterton Global's Mount Hamilton gold-silver deposit and historical mine is located 10 miles southeast of the Pan Mine within the White Pine Mining District. Exploration at Mount Hamilton began in the late 1960's. The Seligman and Centennial deposits were defined in the late 1980's with production and open pit mining of the Seligman Deposit commencing in 1994.

The epithermal/skarn oxide-hosted gold mineralization at Mt. Hamilton is typically hosted in the Cambrian Secret Canyon Shale and the Cambrian Dunderberg Shale, calcareous laminated mudstone units with thin limestone interbeds. Mineralization consists of skarn hosted tungsten, molybdenum, and copper +/-zinc with later possibly epithermal gold and silver. Gold mineralization is hosted in a thick skarn horizon bounded by hornfels. In the Centennial and Seligman deposits, gold is present as free gold, residing in

oxide minerals or quartz, and adsorbed on clay minerals with oxide mineralization formed as a result of weathering and oxidation of original sulphide mineralization (Pennington et al., 2014).

### 23.5 Lookout Mountain Project

Timberline Resources Corporation's Lookout Mountain Project is located approximately 16.5 miles northwest of the Pan Mine. Gold mineralization at Lookout Mountain is Carlin-type disseminated sediment-hosted mineralization with characteristic decalcification, argillization and silicification alteration. The 2013 NI 43-101 MRE at Lookout Mountain includes 28.9 million of 0.018 oz/ton Au for a total of 508,000 ounces of gold (at a 0.006 oz/ton Au cut-off) for total measured and indicated resource (Table 23-2). In addition, the Inferred MRE for Lookout Mountain includes 11.7 million tons of 0.012 oz/ton Au for a total of 141,000 gold ounces (Gustin, 2013). Timberline is currently conducting additional exploration and advancing Lookout Mountain toward a production decision.

Table 23-2: Lookout Mountain Mineral Resource Statement

| Category               | Tons (000's) | Tonnes (000's) | Au Grade (oz/t) | Au Grade (g/t) | Contained<br>Ounces (Au) |
|------------------------|--------------|----------------|-----------------|----------------|--------------------------|
| Measured               | 3,043        | 2,761          | 0.035           | 1.20           | 106,000                  |
| Indicated              | 25,897       | 23,493         | 0.016           | 0.55           | 402,000                  |
| Measured and Indicated | 28,940       | 26,254         | 0.018           | 0.62           | 508,000                  |
| Inferred               | 11,709       | 10,622         | 0.012           | 0.41           | 141,000                  |

Source: Gustin, 2013

Carlin-type gold mineralization at Lookout Mountain occurs within the Lookout Mountain breccias, as well as in the overlying Cambrian Dunderburg Shale. Mineralization was discovered in jasperoid that caps Ratto Ridge at the surface and has been intersected to depths of 1,500 ft (457 m). Gold mineralization is associated with strong surface concentrations of arsenic, mercury, and antimony in surface rock and soil samples. The main feature controlling mineralization is interpreted to be hydrothermal-related dissolution and associated brecciation, dolomitization, sideritization, and ankeritization within the Geddes Limestone (Gustin, 2013).

# 23.6 Ruby Hill Mine

Waterton Global's Ruby Hill gold deposit is located 30 miles (45 km) northwest of the Gold Rock Property along the Battle Mountain / Eureka gold trend. The Archimedes deposit was defined in the mid-1990's with production and open pit mining of the commencing in 1997. Production ceased in 2002. In 2007 Barrick Gold started production as an open-pit heap leach operation and the mine has been in production since that time.

Mineralization of the Archimedes deposit is primarily hosted in thin to thick bedded cherty limestone of the early Ordovician Goodwin Limestone of the Pogonip Group. Additionally, mineralization has been identified in the micritic to shaley limestone of the early Ordovician Ninemile Formation of the Pogonip Group, and early Cretaceous quartz porphyry. Mineralization is coincident with zones of iron-stained jasperoid and decalcified limestone. Mineralization is primarily controlled by WNW- and NE- to NNE trending faults, with secondary control by open folds and faulted fold limbs. Mineralization is also

associated with stratigraphic traps formed by contacts between the limey mudstone and wackestone. The shape of the deposit is complex and irregular. Generally, it has a central elongate, sub-tabular body with an ovate cross section from which lobes branch and flare out along structural intersections. The orebody has a central elongated lens of higher Jasperoid ore enclosed by a more tabular envelope of lower grade decalcified limestone ore (USGS MRDS #10310484).

# 24 Other Relevant Data and Information

The QP is not aware of any additional information that would materially impact the conclusions of this report

# 25 Interpretation and Conclusions

## 25.1 Exploration

Nearly 100% of the mineral resources that were mined from 2018 up to the middle of 2020 at Pan were replaced with the 2018 to 2020 drilling (SRK 2021). However, approximately 80% of the mineral resources mined from mid-2020 to December 31, 2022 have been replaced with the 2021 to 2022 drilling. As production continues at Pan, it is important to conduct additional drilling to both replace reserves that are being mined and to maximize the mine life projections to create options for future expansion and financing.

Sedimentary contacts and horizons along with the extension of known important structures at Pan have gold mineralization potential and many have not been adequately tested. The Pan land package has potential for additional economic discoveries. Exploration targets should be included in future exploration expenditure, to increase the mineral resource base and replenish the reserves mined.

It is recommended that a multi-year multi-phase program of exploration drilling is planned that allows for the growth of the overall project resources and reserves. The program should be laid out utilizing a strategy of prioritizing targets nearest current production to reduce planning and development time as well as improve odds of success.

In addition to drilling, general exploration of areas away from current mining should be completed. Detailed geologic mapping and additional geochemical sampling may provide additional targets beyond those already identified for future drilling.

A multi-phased development and exploration drilling plan is proposed for 2023 which includes many of the recommendations noted above. Among the targets to be evaluated in initial phases are:

- North extension of Dynamite;
- South, Southeast of South Pan and East side of South Pan at depth and along strike Palomino Pegasus Target areas;
- The NW-SE trending string of pearls of mineralization from Banshee to Mustang; and,
- Test splay faults extending off the Branham Fault for near surface pockets of mineralization from the south end of South Pan to Coyote, following up the 2022 Coyote discovery..

Additional areas to be considered for subsequent phases of development and exploration drilling are the north and south strike extensions of the Branham Fault Zone beyond previously identified mineralization and a number of previously identified (by Midway geologists) favorable geologic and geochemical targets within the Pan property boundary.

### 25.2 Mineral Resource Estimate

Pan has three main mineralized zones; North, Central, and South. Gold (Au) mineralization spatially follows the Devils Gate Limestone – Pilot Shale contact in all three and is also controlled by steeply-dipping faults that trend north-south and secondarily by west-northwest (WNW) open fold axes.

This report provides an updated Mineral Resource Estimate (MRE) for the Pan Mine and is based upon historical drilling and drilling conducted from 2018 to 2022 and supersedes all of the prior resource estimates for the Pan Mine. The resource estimate provided by Smith et al. (2021), Deiss et al. (2019) and Pennington et al. (2017), along with other older resource estimates are now all considered historical in nature.

The updated Pan Mine MRE is reported at various cutoffs depending on what type of alteration each block is flagged with. The Measured, Indicated, and Inferred MRE is edge diluted, constrained within an optimized pit shell, and includes a Measured and Indicated Mineral Resource of 37.247 million tons (33.75 million tonnes) at 0.010 oz/ton (0.33 g/t) Au for 358,900 ounces of gold, and an Inferred Mineral Resource of 3.578 million tons (3.246 million tonnes) at 0.012 oz/ton (0.40 g/t) Au for 42,000 ounces of gold (Table 25-1). The reported MRE utilizes a minimum gold cutoff of 0.003 oz/ton Au (0.10 g/t). The MRE is inclusive of reserves.

Table 25-1: Pan Mine Resource Estimate Constrained within the '\$1700/oz' Pit Shell for Gold at a Cut-off Grade of 0.1 g/t (0.003 oz/t) by Area (effective date of December 31, 2022)

| Region  | Classification | Tons (tons)* | Tonnes (tonnes)* | Au Grade<br>(oz/ton) | Au Grade<br>(g/t) | Contained Au (troy ounces)* |
|---------|----------------|--------------|------------------|----------------------|-------------------|-----------------------------|
|         | Measured*      | 3,000        | 2,000            | 0.012                | 0.41              | 0                           |
| North   | Indicated*     | 11,470,000   | 10,405,000       | 0.010                | 0.34              | 113,400                     |
| NOTH    | M&I*           | 11,472,000   | 10,408,000       | 0.010                | 0.34              | 113,500                     |
|         | Inferred*      | 709,000      | 643,000          | 0.013                | 0.44              | 9,100                       |
|         | Measured*      | 32,000       | 29,000           | 0.020                | 0.57              | 500                         |
| Central | Indicated*     | 6,396,000    | 5,803,000        | 0.010                | 0.33              | 62,400                      |
| Central | M&I*           | 6,428,000    | 5,831,000        | 0.010                | 0.34              | 62,900                      |
|         | Inferred*      | 442,000      | 401,000          | 0.010                | 0.36              | 4,700                       |
|         | Measured*      | 10,000       | 9,000            | 0.017                | 0.57              | 100                         |
| South   | Indicated*     | 19,337,000   | 17,542,000       | 0.010                | 0.33              | 182,300                     |
| South   | M&I*           | 19,347,000   | 17,551,000       | 0.010                | 0.33              | 182,500                     |
|         | Inferred*      | 2,427,000    | 2,202,000        | 0.012                | 0.40              | 28,200                      |
|         | Measured*      | 44,000       | 40,000           | 0.016                | 0.55              | 700                         |
| Total   | Indicated*     | 37,203,000   | 33,750,000       | 0.010                | 0.33              | 358,200                     |
| TOTAL   | M&I*           | 37,247,000   | 33,790,000       | 0.010                | 0.33              | 358,900                     |
|         | Inferred*      | 3,578,000    | 3,246,000        | 0.012                | 0.40              | 42,000                      |

Source: APEX, 2022

<sup>\*</sup>Notes:

<sup>1.</sup> CIM (2014, 2019) guidelines, standards and definitions were followed for estimation and classification of mineral resources.

<sup>&</sup>lt;sup>2</sup> The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues

<sup>3.</sup> Resources are stated as contained within a constrained pit shell; pit optimization was based on an assumed gold price of US\$1,700/oz, Silicic (hard) ore recoveries of 60% for Au and an Argillic (soft) ore recovery of 80% for Au, an ore mining cost of US\$2.09/st, a waste mining cost of \$1.97/st, an ore processing and G&A cost of US\$3.13/st, and pit slopes between 45-50 degrees;

<sup>&</sup>lt;sup>4</sup> Resources are domain edge diluted and reported using a minimum internal gold cut-off grade of 0.003 oz/st Au (0.10 g/t Au).

<sup>&</sup>lt;sup>5</sup> Measured and Indicated Mineral Resources presented are inclusive of Mineral Reserves. Inferred Mineral Resources are not included in Mineral Reserves.

<sup>&</sup>lt;sup>6</sup> Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability. There has been insufficient exploration to define the inferred resources tabulated above as an indicated or measured mineral resource, however, it is

reasonably expected that the majority of the Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration. There is no certainty that any part of the Mineral Resources estimated will be converted into Mineral Reserves:

- 7. Numbers in the table have been rounded to reflect the accuracy of the estimate and may not sum due to rounding.
- <sup>8</sup> Mr. Michael Dufresne, M.Sc., P. Geol., P. Geo. of APEX Geoscience Ltd. is responsible for reviewing and approving the Pan mine open pit Mineral Resource Estimate. Mr. Dufresne is a Qualified Person ("QP") as set out in NI 43-101.

The Pan Mine pit shell constrained MRE represents approximately 54% of the total volume and 61% of the total gold ounces in the entire unconstrained Pan Mine block model that was estimated in 2022. The updated MRE shows a 16% decrease in Measured and Indicated Resources to 358,900 gold ounces versus the 2020 MRE that utilized a June 30, 2020 topographic surface (Smith et al., 2021). The approximate calculated mining depletion for the period of June 30, 2020 to December 31, 2022 is a little over 13 million tons and about 170,000 oz Au, the vast majority of which were Measured and Indicated Resources from the 2020 MRE. The 2021 to 2022 drilling has effectively resulted in the addition of Measured and Indicated Resource equivalent to approximately 100,000 gold ounces versus the 170,000 gold ounces that have been mined during the period from June 30, 2020 to December 31, 2022. An additional Inferred Resource of 42,000 gold ounces has been estimated at the Pan Mine, that with continued drilling may provide additional Measured and/or Indicated gold ounces.

### 25.3 Mining and Mineral Reserve

By using a contract miner at Pan, major capital costs for equipment have been avoided. The operation has performed well over the past several years and the QP is not aware of any major risks from an operational perspective.

As with all precious metal projects, the Pan mine is sensitive to metal prices. A major change to the gold price could impact the operation.

The pit has performed well from a geotechnical perspective; however, a lack of data has led to the QP taking a more conservative approach to the pit slopes. The geotechnical parameters could be evaluated, including additional data collection, see if there is opportunity to steepen the pit slopes. This could reduce waste mining requirements and push some waste mining back in the production schedule, potentially improving the project economics.

In the QP's opinion, additional refinement to the mine plan presents an opportunity to improve the economic projections of the operation.

# 25.4 Metallurgy and Processing

In 2022, Forte Analytical completed a detailed test program on whole PQ core from 15 drillholes provided by Calibre Mining. The core intervals were logged and composited into eight samples: four from the South pit (siltstone, limestone, limestone/clay and limestone/calcite), two from Red Hill/Banshee pit (argillic, silicified) and two from the North pit (silicified, non-silicified).

Cyanide-soluble to fire assay ratios (CN/FA) were between 54% and 123% as a proxy indication of ultimate gold extraction. While South "soft" samples showed higher CN/FA values, this was not always the case; the same was true for North "hard" samples. As was observed in historical testing, South

material showed minimal effect of particle size on gold extraction while North material extractions increased significantly between 10 mesh and 200 mesh feed sizes.

On an annual basis, Pan's consistent operating conditions and ability to achieve the target blend of hard to soft material has allowed the operation to steadily improve heap leach extractions since the crusher was installed.

Pan maintains a database of daily ore tonnes and grades since 2017. Using this database of results, constant gold extractions have been back calculated to determine heap pad performance. Current estimates of gold extractions are:

Hard material: 50% ROM 60% crushed to 6"Soft material: 75% ROM 80% crushed to 6"

The target blend of 60:40 hard to soft may need to be revaluated based on the current 36-month mine plan. If Argillic alteration is assumed to be soft material, the expected blend is around 80:20 and much higher in % Hard than the target of 60:40. If some of the Unaltered lithology is soft as well, then the target blend can be maintained. Improved geometallurgical characterization of all Pan ore types (hard vs. soft, Argillic vs. Silicified alteration) is needed for more accurate forecasting of future heap leach pad performance.

### 25.5 Environmental Studies and Permitting

Calibre has maintained compliance with the permits and authorizations, so permit renewal of federal and state permits required for operations within the regulatory mandated deadlines is anticipated. At the time of reporting, known environmental issues had been addressed and mitigated, as required.

The authorized 2022 reclamation cost update, recently approved by the BLM and the NDEP, stands at US\$18,729,598, covering 2,393 acres of disturbance. This estimate uses Davis Bacon wage rates and assumes that reclamation will be undertaken by a third party rather than the operator.

Internal reclamation and closure costs were also estimated using the reclamation bond cost estimate described in Section 20.14.1 and the 2022 Asset Retirement Obligation Estimate and Cost Model for Pan Mine (H&A 2023). The two models, which include LOM facilities, were reviewed and compared to approximate inputs generated for the mine plan. Reclamation and closure costs were estimated to be approximately \$17 million. This estimate is based on facilities that vary from the prior LOM facilities in the H&A models.

## 25.6 Projected Capital and Operating Outcomes

Capital costs are developed primarily from Calibre vendor quotations and from SRK 2022 construction estimates, Capital and operating 2022 dollars. No inflation factors are used in the economic projections. The analysis does not include any allowance for end of mine salvage value.

Operating costs are based on the current contract with the mining contractor; the contract term will end on December 31, 2025. The contract is subject to escalation and de-escalation factors based on the (PPI) index starting in January 2023 and reviewed every six months. All owner related cost is based on

the actual cost for the period of October 2021 through September 2022. There is no allowance for corporate overhead. The LOM average cash cost is US\$1,228/Au oz produced.

Based on the assumptions presented herein, the Pan mine reserve generates positive free cash flow at the assumed \$1,600 gold price. The gold spot price is approximately \$1,825, as of the effective date of this report which presents opportunity to improve the economic forecast for the reserve.

### 25.7 Foreseeable Impacts of Risks

Gold prices are volatile and there is no guarantee that Calibre will receive the gold price as used in the economics.

Inflation continues to put pressure on capital and operating costs and may add to capital and operating costs.

Changes in government regulations could adversely impact the future growth and operation of the facilities.

Demand for skilled and technical labor has increased recently in central Nevada and some short-term operational difficulties could be encountered due to staff shortages or labor costs may increase operating costs.

In order to maintain recovery and permeability of the heap leach pad, Calibre will need to carefully control the blend of hard and soft ores being delivered to the crusher. A belt agglomeration system is forecast to be installed by April 2024. A blend of hard and soft ores is not achievable after the 1<sup>st</sup> quarter of 2024. Unaltered material is assumed to be soft and is not well characterized. If the belt agglomeration system is not installed the permeability of the heap leach pad will be a risk to gold recovery.

## 26 Recommendations

### 26.1 Resources and Exploration

A multi-phased development and exploration work plan is proposed for the short term at the Pan Mine and surrounding areas. The initial phase should focus on identifying near mine additional resources which can be ultimately converted to mineable reserves. Several target areas at North Pan, Dynamite and South Pan require drilling. In parallel and subsequent to the initial phase of development drilling should be exploration programs designed to identify zones of mineralization not currently in the resource base. These programs should utilize detailed geologic mapping, geochemical sampling (soil and rock chip) followed by evaluation based on the most current interpretation of mineralization controls and stratigraphy at the Pan Mine.

Favorable targets generated by this work would be prioritized and drill tested as warranted. Current exploration targets that warrant drilling are Mustang, Pegasus, Palomino and South Pan to Coyote.

Subsequent and periodic resource conversion and exploration drilling programs should be employed to replace and add to reserves.

The estimated cost of the drilling program is approximately (\$4.0M)

### 26.2 Mining

Refinement to the mine plan presents an opportunity to improve the economic projections of the operation. Estimated cost for mine plan refinement (\$100K).

#### 26.3 Pit Geotechnical Recommendations

SRK recommends that additional slope stability work is completed. Additional stability analyses will be necessary if designs deviate from the designs in the Golder stability analysis. The estimate cost for updating the alteration model, confirming and adjusting the argillic model strength parameters, designing and implementing a slope monitoring program and geotechnical expenses are estimated to be (\$400K). Additional geotechnical characterization could allow for steepened pit slopes.

- Update the alteration model based on the ongoing 2020 exploration drilling program;
- Conduct geotechnical data collection using six exploration drill holes;
- Confirm and adjust the argillic material strength parameters used in this report;
- After completion of the geotechnical drilling program, update the geotechnical model;
- Continues with pre-split blasting and wall scaling;
- Implement a slope monitoring plan to anticipate potential wall instabilities;
- Update the geotechnical models as the mine is progressing; and,

 Commission geotechnical inspections by a geotechnical specialist to assess the pit performance, examine the pit design implementation practices, review the updated models, and review the wall stability.

## 26.4 Metallurgy and Processing

Metallurgical testwork results on Pan samples have demonstrated a wide range of column leach extractions as well as size sensitivity. This has been broadly related to "hard" vs. "soft" zones and/or clay content but changes in ore domaining have not allowed historical testwork to be applied to current operating practices. (For example, a target blend of 60:40 hard to soft.)

It is the QP's opinion that additional testwork be conducted to relate CN/FA values to final column leach extractions. Recent results have shown CN/FA values not to be reliable in estimating column leach extractions and will need other factors such as crushed size distribution and composition (e.g., XRD results) also included. Finally, rapid percolation or slump testing should be done to provide an indication of heap leach geotechnical conditions which are not a factor in bottle roll leach (or cyanide "shake") tests.

As there is uncertainty on the amount of "hard" material in the future, better geometallurgical characterization of the Pan deposits is needed to understand how the current blend can be modified when constructing future leach pads. That is, a lower ratio of hard to soft needs to be demonstrated as the new target blend based on both column leach and permeability test results. In addition, a greater proportion of "hard" material needs to be characterized in both North and South Pan pit areas

For accurate forecasting of future Pan heap leach pad performance, geometallurgical characterization of all Pan ore sources must be undertaken. This includes improved understanding of:

- CN/FA values versus material type and crushed size
- Effect of crushed size/clay content on permeabilities under load

Better geometallurgical characterization may allow the target blend of hard to soft to be adjusted and accommodate the apparent shortage of soft material in the future. It is not known if some/all of the Unaltered alteration type can be considered soft material for blending purposes.

The estimated cost of this geometallurgical characterization (including geotechnical studies into heap leach pad permeability) is (\$500K).

#### **26.5** Costs

Estimated Costs for the Recommendations are included in Table 26-1.

Table 26-1: Summary of Costs for Recommended Work

| Area                                                       | Cost Estimate (USD,000) |
|------------------------------------------------------------|-------------------------|
| Exploration drilling program                               | 4,000                   |
| Mine plan                                                  | 100                     |
| Geotechnical program (excluding drill program)             | 400                     |
| Geometallurgical characterization of hard vs soft material | 500                     |
| Total                                                      | 5,000                   |

Source: SRK, 2023

## 27 References

APEX. 2021. Amended Technical Report on the Preliminary Economic Assessment of the Gold Rock Project, White Pine County, Nevada, USA. Prepared for Fiore Gold., September 3, 2021

BLM. 2013. Pan Mine Project Final Environmental Impact Statement, Volume I & II, Case File NVN-090444, December 2013.

BLM. 2021. Greater Sage-Grouse Offset Mitigation Implementation Plan Agreement, May 20, 2021.

Brian Arthur Consulting Metallurgy LLC, 2022 "Pan Mine October 2022 Metallurgical Accounting Review," 18 November 2022.

CIM (2014). Canadian Institute of Mining, Metallurgy and Petroleum Standards on Mineral Resources and Reserves: Definitions and Guidelines, May 10, 2014.

CIM (2019). Canadian Institute of Mining, Metallurgy and Petroleum, CIM Estimation of Mineral Resources & Reserves Best Practice Guidelines, November 29, 2019

Department of Energy, 2019. Elemental Mercury Management and Storage Fees, published in the Federal Register on December 23, 2019.

Forte Analytical, 2022 "Metallurgical Testing of Pan Mine 2020 PQ Core, White Pine County, Nevada", Project #22002, prepared for Calibre Mining Corp., 17 August 2022.

Golder Associates, 2011. Pre-feasibility Level Pit Slope Evaluation, Pan Project, White Pine County, Nevada, prepared for Midway Gold Corp. and dated April 2011. (Project 103-91724). Golder Associates: Reno, NV

Gustavson, 2011. NI 43-101 Technical Report, Feasibility Study for the Pan Gold Project, White Pine County, Nevada. Prepared for Midway Gold, by Gustavson Associates, L.L.C., Lakewood, Colorado, 15 November 2011, 204 pages.

Gustavson, 2015. NI 43-101 Technical Report, 2015 Feasibility Study for the Pan Gold Project, White Pine County, Nevada. Prepared for Midway Gold, by Gustavson Associates, L.L.C., Lakewood, Colorado, 25 June 2015, 275 pages.

H&A, 2023. Asset Retirement Obligation Estimate and Cost Model for Pan Mine, 2022, February 6, 2023.

H&A, 2022. 2022 Annual Update to the Pan Mine Reclamation Cost Estimate, permit no. 0350, BLM Case File NVN-090444, revised September 2022.

HydroGeologica Inc. 2017. Sample Selection for Supplementary Humidity Cell Testing for the GRP Pan North Pit Waste Rock, 2017.

Interralogic, 2013. Waste Rock Management Plan, Pan Project, Nevada. Prepared for Midway Gold US Inc. and dated December 2013.

JBR. 2013. Bird and Bat Conservation Strategy, October 2013.

Jensen, E. 2023. Email from E. Jensen (GRP) to V. Sawyer (SRK) dated January 24, 2023.

Kappes Cassidy & Associates, 2014 "Pan Project Report of Metallurgical Test Work", Project #693C, prepared for Midway Gold Corp., April 2014.

Miller, J. D., R-Y. Wan, and X. Diaz. 2016. Preg-robbing gold ores, In Gold Ore Processing. Elsevier, 885-907 pages.

MDA, 2005. Pan Gold Project, Updated Technical Report, White Pine County, Nevada, USA. Prepared for Castleworth Ventures, Inc. by Mine Development Associates Mine Engineering Services, Reno, Nevada, January 2005. Midway Gold US Inc. 2013. Pan Mine Plan of Operations and Reclamation Permit Application, December 2013

NDEP. 2018 .Fact Sheet for Water Pollution Control Permit NEV2012107, May 8, 2018

NDEP. 2022. Letter to Ms. Carrie Dubray Approving Annual Reclamation Cost Update Minor Modification, October 10, 2022.

NDEP. 2023. Nevada Mercury Control Program (NMCP) | NDEP (nv.gov), accessed January 16, 2023.

Read, J. and Stacey, P., 2009. Guidelines for Open Pit Slope Design. CRC Press.

Resource Development Inc., 2011 "Metallurgical Testing of Midway Pan Samples", prepared for Midway Gold Corp., 28 September 2011.

Resource Development Inc., 2018 "Leach Testing of Pan Ore Fiore Gold Ltd.", 31 August 2018.

Resource Development Inc., 2017a "Static Leach Test Program Pan Project, GRP Resources", 5 May 2017.

Resource Development Inc., 2017b "Heap Leach Test Program Pan Project, GRP Resources", 3 January 2017.

SRK Consulting (Canada) Inc., 2019 "Pan Mine Remodel and Resource Estimation Memorandum", prepared for Fiore Gold Ltd., 14 January 2019

SRK Consulting (US) Inc., 2022. Water Pollution Control Permit NEV2012107 Renewal Application Pan Project, White Pine County, Nevada, October 6, 2022.

SRK Consulting (US) Inc., 2021 "NI 43-101 Updated Technical Report on Resources and Reserves, Pan Gold Project, White Pine County, Nevada", prepared for Fiore Gold Ltd., 22 January 2021.

SRK Consulting (US) Inc., 2017 "NI 43-101 Updated Technical Report, Pan Gold Project, White Pine County, Nevada", prepared for GRP Minerals Corp., 7 July 2017.

U.S. Department of the Interior. 1983. Secretary of the Interior's Standards and Guidelines for Archaeology and Historic Preservation, 48 CFR 44716, September 29, 1983.

Wildlife Resource Consultants. 2020. Pan Mine Eagle Conservation Plan, August 6, 2020.

# 28 Glossary

The Mineral Resources and Mineral Reserves have been classified according to CIM (CIM, 2014). Accordingly, the Resources have been classified as Measured, Indicated or Inferred, the Reserves have been classified as Proven, and Probable based on the Measured and Indicated Resources as defined below.

#### 28.1 Mineral Resources

A **Mineral Resource** is a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction. The location, quantity, grade or quality, continuity and other geological characteristics of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge, including sampling.

An **Inferred Mineral Resource** is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

An **Indicated Mineral Resource** is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit. Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation. An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

A **Measured Mineral Resource** is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are estimated with confidence sufficient to allow the application of Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit. Geological evidence is derived from detailed and reliable exploration, sampling and testing and is sufficient to confirm geological and grade or quality continuity between points of observation. A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proven Mineral Reserve or to a Probable Mineral Reserve.

#### 28.2 Mineral Reserves

A **Mineral Reserve** is the economically mineable part of a Measured and/or Indicated Mineral Resource. It includes diluting materials and allowances for losses, which may occur when the material is mined or extracted and is defined by studies at Pre-Feasibility or Feasibility level as appropriate that include

application of Modifying Factors. Such studies demonstrate that, at the time of reporting, extraction could reasonably be justified.

The reference point at which Mineral Reserves are defined, usually the point where the ore is delivered to the processing plant, must be stated. It is important that, in all situations where the reference point is different, such as for a saleable product, a clarifying statement is included to ensure that the reader is fully informed as to what is being reported. The public disclosure of a Mineral Reserve must be demonstrated by a Pre-Feasibility Study or Feasibility Study.

A **Probable Mineral Reserve** is the economically mineable part of an Indicated, and in some circumstances, a Measured Mineral Resource. The confidence in the Modifying Factors applying to a Probable Mineral Reserve is lower than that applying to a Proven Mineral Reserve.

A **Proven Mineral Reserve** is the economically mineable part of a Measured Mineral Resource. A Proven Mineral Reserve implies a high degree of confidence in the Modifying Factors.

#### 28.3 Definition of Terms

The following general mining terms may be used in this report.

Table 28-1: Definition of Terms

| Term                | Definition                                                                   |
|---------------------|------------------------------------------------------------------------------|
| Assay               | The chemical analysis of mineral samples to determine the metal content.     |
| Capital Expenditure | All other expenditures not classified as operating costs.                    |
| Composite           | Combining more than one sample result to give an average result over a       |
|                     | larger distance.                                                             |
|                     | A metal-rich product resulting from a mineral enrichment process such as     |
| Concentrate         | gravity concentration or flotation, in which most of the desired mineral has |
|                     | been separated from the waste material in the ore.                           |
| Crushing            | Initial process of reducing ore particle size to render it more amenable for |
| Crushing            | further processing.                                                          |
| Cut-off Grade (CoG) | The grade of mineralized rock, which determines as to whether or not it is   |
| Cut-on Grade (COG)  | economic to recover its gold content by further concentration.               |
| Dilution            | Waste, which is unavoidably mined with ore.                                  |
| Dip                 | Angle of inclination of a geological feature/rock from the horizontal.       |
| Fault               | The surface of a fracture along which movement has occurred.                 |
| Footwall            | The underlying side of an orebody or stope.                                  |
| Gangue              | Non-valuable components of the ore.                                          |
| Grade               | The measure of concentration of gold within mineralized rock.                |
| Hanging wall        | The overlying side of an orebody or slope.                                   |
| Haulage             | A horizontal underground excavation which is used to transport mined         |
| Tidulaye            | ore.                                                                         |
| Hydrocyclone        | A process whereby material is graded according to size by exploiting         |
| i iyarocycione      | centrifugal forces of particulate materials.                                 |

| Term                         | Definition                                                                           |
|------------------------------|--------------------------------------------------------------------------------------|
| Igneous                      | Primary crystalline rock formed by the solidification of magma.                      |
| Kriging                      | An interpolation method of assigning values from samples to blocks that              |
| Kriging                      | minimizes the estimation error.                                                      |
| Level                        | Horizontal tunnel the primary purpose is the transportation of personnel             |
|                              | and materials.                                                                       |
| Lithological                 | Geological description pertaining to different rock types.                           |
| LOM Plans                    | Life-of-Mine plans.                                                                  |
| LRP                          | Long Range Plan.                                                                     |
| Material Properties          | Mine properties.                                                                     |
|                              | A general term used to describe the process in which the ore is crushed              |
| Milling                      | and ground and subjected to physical or chemical treatment to extract the            |
|                              | valuable metals to a concentrate or finished product.                                |
| Mineral/Mining Lease         | A lease area for which mineral rights are held.                                      |
| Mining Assets                | The Material Properties and Significant Exploration Properties.                      |
| Ongoing Capital              | Capital estimates of a routine nature, which is necessary for sustaining             |
| Origoning Capital            | operations.                                                                          |
| Ore Reserve                  | See Mineral Reserve.                                                                 |
| Pillar                       | Rock left behind to help support the excavations in an underground mine.             |
| ROM                          | Run-of-Mine.                                                                         |
| Sedimentary                  | Pertaining to rocks formed by the accumulation of sediments, formed by               |
| Sedimentary                  | the erosion of other rocks.                                                          |
| Shaft                        | An opening cut downwards from the surface for transporting personnel,                |
| Onait                        | equipment, supplies, ore and waste.                                                  |
| Sill                         | A thin, tabular, horizontal to sub-horizontal body of igneous rock formed            |
|                              | by the injection of magma into planar zones of weakness.                             |
|                              | A high temperature pyrometallurgical operation conducted in a furnace, in            |
| Smelting                     | which the valuable metal is collected to a molten matte or doré phase and            |
|                              | separated from the gangue components that accumulate in a less dense                 |
| Stone                        | molten slag phase. Underground void created by mining.                               |
| Stope                        | , ,                                                                                  |
| Stratigraphy                 | The study of stratified rocks in terms of time and space.                            |
| Strike                       | Direction of line formed by the intersection of strata surfaces with the             |
| Cultido                      | horizontal plane, always perpendicular to the dip direction.                         |
| Sulfide                      | A sulfur bearing mineral.                                                            |
| Tailings                     | Finely ground waste rock from which valuable minerals or metals have been extracted. |
| Thickoning                   |                                                                                      |
| Thickening Total Expanditure | The process of concentrating solid particles in suspension.                          |
| Total Expenditure            | All expenditures including those of an operating and capital nature.                 |
| Variogram                    | A statistical representation of the characteristics (usually grade).                 |

# 28.4 Abbreviations

The following abbreviations may be used in this report.

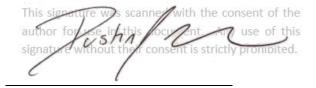
**Table 28-2: Abbreviations** 

| Abbreviation    | Unit or Term                                                            |
|-----------------|-------------------------------------------------------------------------|
| 0               | degree                                                                  |
| AAL             | American Assay Labs                                                     |
| AAS             | Atomic Absorption Spectrometry                                          |
| ABA             | acid-base accounting                                                    |
| ABA-ML          | Acid base accounting and metals leaching                                |
| ADR             | adsorption-desorption-recovery                                          |
| Ag              | Silver                                                                  |
| AMT             | Alternative Minimum Tax                                                 |
| AMTI            | Alternative Minimum Tax Income                                          |
| ARMPA           | Approved Resource Management Plan Amendments for the Great Basin Region |
| Au              | Gold                                                                    |
| BBCS            | Bird and Bat Conservation Strategy                                      |
| BE              | break-even                                                              |
| BLM             | United States Department of the Interior Bureau of Land Management      |
| BMP             | best management practices                                               |
| CCS             | Credit Conservation System                                              |
| C-I-C           | carbon-in-column                                                        |
| CIM             | Canadian Institute of Mining, Metallurgy and Petroleum                  |
| cm              | centimeter                                                              |
| cm <sup>3</sup> | cubic centimeter                                                        |
| CNAA            | cyanide-soluble atomic absorption                                       |
| CN/FA           | cyanide-soluble/ fire assay ratio                                       |
| CoG             | Cut-off Grade                                                           |
| CPPs            | Cumulative Probability Plots                                            |
| CRM             | Certified Reference Material                                            |
| CSV             | comma-separated values                                                  |
| Cu              | Copper                                                                  |
| DNA             | determination of NEPA adequacy                                          |
| DOE             | Department of Energy                                                    |
| DR/FONSI        | decision record/finding of no significant impact                        |
| EBITDA          | earnings before interest, tax, depreciation and amortization            |
| ECP             | Eagle Conservation Plan                                                 |
| EDC             | engineering design change                                               |
| EIS             | environmental impact statement                                          |
| EPA             | U.S. Environmental Protection Agency                                    |

| Abbreviation    | Unit or Term                                |
|-----------------|---------------------------------------------|
| ET              | evapotranspiration                          |
| FA              | fire assays                                 |
| FoS             | factors of safety                           |
| FS              | feasibility study                           |
| ft <sup>2</sup> | square feet                                 |
| G&A             | general and administrative                  |
| g               | gram                                        |
| g/t             | gram per metric ton                         |
| g/L             | grams per liter                             |
| gal             | gallon                                      |
| GHMA            | general habitat management area             |
| gpm             | gallons per minute                          |
| IAPP            | industrial artificial pond permit           |
| ICP             | Inductively Coupled Plasma                  |
| ID2             | Inverse Distance Squared                    |
| IRR             | Internal Rate of Return                     |
| KCA             | Kappes, Cassidy and Associates              |
| kg/t            | kilograms per metric ton                    |
| KOP             | Key Observation Point                       |
| koz             | thousand troy ounces                        |
| kton            | Thousand US short tons                      |
| kt              | Thousand metric tonnes                      |
| kV              | kilovolt                                    |
| L               | liter                                       |
| LV              | locally varying                             |
| lbs             | pounds                                      |
| LCY             | loose cubic yard                            |
| LECO            | LECO elemental analyzers – LECO Corporation |
| LG              | Lerchs-Grossmann                            |
| LMDL            | lower method detection limit                |
| LOM             | life-of-mine                                |
| М               | million                                     |
| MACRS           | Modified Accelerated Cost Recovery System   |
| MDW             | Midway Gold Corp.                           |
| mg/L            | milligrams per liter                        |
| Midway          | Midway Gold Corp.                           |
| ML              | metals leaching                             |
| Mn              | manganese                                   |
| MPEP            | MineSight Economic Planner                  |

| Abbreviation | Unit or Term                                                                            |
|--------------|-----------------------------------------------------------------------------------------|
| MPEP         | MineSight Economic Planner                                                              |
| MRE          | Mineral Resource Estimated                                                              |
| Mt/y         | million tons per year                                                                   |
| MWMP         | meteoric water mobility procedure                                                       |
| NAC          | Nevada Administrative Code                                                              |
| NaCN         | Sodium cyanide                                                                          |
| NDEP-BMRR    | Nevada Division of Environmental Protection-Bureau of Mining Regulation and Reclamation |
| NDOT         | Nevada Department of Transportation                                                     |
| NDOW         | Nevada Department of Wildlife                                                           |
| NDWR         | Nevada Division of Water Resources                                                      |
| NEPA         | National Environmental Policy Act                                                       |
| NI 43-101    | National Instrument 43-101                                                              |
| NPV          | Net Present Value                                                                       |
| NRHP         | National Register of Historic Places                                                    |
| NSR          | Net Smelter Royalty                                                                     |
| NvMACT       | Nevada Maximum Achievable Control Technology                                            |
| OZ           | Troy ounces                                                                             |
| oz/ton       | Troy ounces per short ton                                                               |
| PAG          | potentially acid generating                                                             |
| Pan          | Pan Gold Project                                                                        |
| Pb           | Lead                                                                                    |
| PE           | Phillips Enterprises LLC                                                                |
| PHMA         | priority habitat management area                                                        |
| PPI          | Producer Price Index                                                                    |
| ppm          | parts per million                                                                       |
| Programmatic | Programmatic Agreement between BLM, Nevada State Historic Preservation                  |
| Agreement    | Office, and the Advisory Council on Historic Preservation                               |
| PSHA         | Probabilistic Seismic Hazard Analysis                                                   |
| Q            | quarter                                                                                 |
| QA/QC        | Quality Assurance/ Quality Control                                                      |
| QMS          | Quality Management System                                                               |
| RCRA         | Resource Conservation and Recovery Act                                                  |
| RDi          | Resource Development Corp.                                                              |
| ROD          | Record of Decision                                                                      |
| ROM          | run-of-mine                                                                             |
| SEC          | U.S. Securities and Exchange Commission                                                 |
| sec          | second                                                                                  |
| SRCE         | Standardized Reclamation Cost Estimator                                                 |
| SRK          | SRK Consulting (U.S.), Inc.                                                             |

| Abbreviation | Unit or Term                            |
|--------------|-----------------------------------------|
| ton          | US short ton (2,000 lbs.)               |
| t            | Metric tonne                            |
| T&M          | Time and Materials                      |
| ton/d        | tons per day                            |
| TMT          | Tentative Minimum Tax                   |
| USDA         | United States Department of Agriculture |
| USFS         | United States Forest Service            |
| USFWS        | United States Fish and Wildlife Service |
| USGS         | United States Geological Survey         |
| V            | volt                                    |
| VA           | volt-amperes                            |
| WRDA         | Waste Rock Disposal Areas               |
| XRD          | X-ray diffraction (XRD)                 |
| XRF          | X-ray fluorescence                      |


# Closure

This report was prepared by:



Justin Smith, P.E., RM-SME

and reviewed by



Dustin Meisburger, PEng., RM-SME

All data used as source material plus the text, tables, figures, and attachments of this document have been reviewed and prepared in accordance with generally accepted professional engineering and environmental practices.

| Appendix A | Certificates of Qualified Persons |  |  |  |
|------------|-----------------------------------|--|--|--|
|            |                                   |  |  |  |
|            |                                   |  |  |  |
|            |                                   |  |  |  |
|            |                                   |  |  |  |

Appendices

To accompany the report entitled: "NI 43-101 Updated Technical Report on Resources and Reserves Pan Gold Project, White Pine County, Nevada" prepared for Calibre Mining Corp. dated March 16, 2023 with an effective date of December 31, 2022 (the "Technical Report").

I, Justin Smith, B.Sc., P.E., RM-SME, do hereby certify that:

- 1 I am a Principal Consultant (Mining) with the firm of SRK Consulting (U.S.), Inc. with an office at 5250 Neil Rd #300, Reno, NV 89502, United States.
- I am a graduate of Colorado School of Mines in 2009 and received a Bachelor's degree in mining engineering from Colorado School of Mines, United States. I have practiced my profession continuously since 2009 where I have provided on-site engineering, reserves calculations, and mine engineering. I have both worked at gold mines operations as well as consulted on a range of gold projects around the world. Additionally, I have been a contributor to several precious and base metal technical reports in Nevada, Alaska, Arizona, Nebraska, Idaho, and internationally.
- I am a professional engineer registered with the State of Nevada, License #23214. I am a Registered Member of the Society for Mining, Metallurgy & Exploration, Registration #4152085-RM.
- I have visited the Pan Gold property, for this Technical Report my site visit took place on December 6, 2022.
- I have read the definition of "Qualified Person" set out in National Instrument 43-101 and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of National Instrument 43-101 and this technical report has been prepared in compliance with National Instrument 43-101 and Form 43 101F1.
- As a Qualified Person, I am independent of the issuer as defined in Section 1.5 of National Instrument 43-101.
- I accept professional responsibility for Sections 1.5, 1.6, 2, 3, 15, 16 (Except 16.2.1), 24, 25.3, and 26.2 of this Technical Report.
- 8 I was involved and a Qualified Person on the NI 43-101 Updated Technical Reports completed in 2017 and 2021.
- As of the date of this certificate, to the best of my knowledge, information and belief, the portion of the Technical Report for which I am responsible contains all scientific and technical information that is required to be disclosed to make the portion of the Technical Report for which I am responsible not misleading.
- 10 I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated 16th March, 2023 at Reno, United States.

["signed and sealed"]

Justin Smith, B.Sc., P.E., RM-SME

Principal Consultant (Mining)

SRK Consulting (U.S.), Inc.



To accompany the report entitled: "NI 43-101 Updated Technical Report on Resources and Reserves Pan Gold Project, White Pine County, Nevada" prepared for Calibre Mining Corp. dated March 16, 2023 with an effective date of December 31, 2022 (the "Technical Report").

- I, Michael B. Dufresne, M.Sc., P.Geol., P.Geo., do hereby certify that:
- 1 I am President and a Principal Consultant with the firm of APEX Geoscience Ltd. with an office at 11450 160 Street NW, Suite #100, Edmonton AB, T5M 3Y7 Canada.
- I graduated with a B.Sc. in Geology from the University of North Carolina at Wilmington in 1983 and with a M.Sc. in Economic Geology from the University of Alberta in 1987. I have practiced my profession continuously since 1983. I have provided a range of on-site geological modelling and mineral resource estimation consulting for more than 20 years at gold development and mining operations as well as consulted on a range of gold projects around the world.
- I am and have been registered as a Professional Geologist with the Association of Professional Engineers and Geoscientists of Alberta since 1989 (Licence M48439). I have been registered as a Professional Geologist with the association of Professional Engineers and Geoscientists of BC since 2012 (Licence 169929).
- I have visited the Pan Gold property, for this Technical Report my site visit took place on January 28<sup>th</sup> and 29th, 2022.
- I have read the definition of "Qualified Person" set out in National Instrument 43-101 and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of National Instrument 43-101 and this technical report has been prepared in compliance with National Instrument 43-101 and Form 43 101F1.
- As a Qualified Person, I am independent of the Property and issuer as defined in Section 1.5 of National Instrument 43-101.
- I accept professional responsibility for Sections 1.1, 1.2, 1.4, 4 (except 4,4), 5 to 12, 14, 23, 24, 25.1, 25.2 and 26.1 as well as contributions to portions of Sections 2 and 26 of this Technical Report.
- I have had limited prior involvement as a Qualified Person on geological consulting at the Pan Project from 2017 to 2022.
- As of the date of this certificate, to the best of my knowledge, information and belief, the portion of the Technical Report for which I am responsible contains all scientific and technical information that is required to be disclosed to make the portion of the Technical Report for which I am responsible not misleading.
- 10 I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated March 16<sup>th</sup>, 2023 at Edmonton, Alberta Canada.

["signed and sealed"]

Michael B. Dufresne, M.Sc., P.Geol., P.Geo. President and Principal Consultant APEX Geoscience Ltd.

To accompany the report entitled: "NI 43-101 Updated Technical Report on Resources and Reserves Pan Gold Project, White Pine County, Nevada" prepared for Calibre Mining Corp. dated March 16, 2023 with an effective date of December 31, 2022 (the "Technical Report").

- I, Michael Iannacchione, B.Sc., P.E., MBA, do hereby certify that:
- I am an Associate Principal Consultant (Mining) with the firm of SRK Consulting (U.S.), Inc. with an office at 5250 Neil Rd #300, Reno, NV 89502, United States.
- I am a graduate of the University of Nevada in 1982 with a Bachelor's degree in mining engineering from the University of Nevada, United States. I also received a Master of Business Administration degree from the University of Notre Dame, United States in 2018. I have practiced my profession continuously since 1982 and have provided engineering, management and financial planning. The financial planning included strategic business plans and budgets. I have worked at gold mines and a molybdenum operation. I managed a range of gold projects., as well as the molybdenum project. I provided a financial review of an oil shale project in Utah. Additionally, I contributed to the previous Technical Report for the Pan Mine in 2020. My experience includes mines and projects in Nevada, Alaska, and Utah. I also conducted due diligence for mergers and acquisitions in Mexico.
- 3 I am a professional engineer registered with the State of Nevada, License #10643.
- 4 My site visit took place on September 10, 2020.
- I have read the definition of "Qualified Person" set out in National Instrument 43-101 and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of National Instrument 43-101 and this technical report has been prepared in compliance with National Instrument 43-101 and Form 43 101F1.
- As a Qualified Person, I am independent of the issuer as defined in Section 1.5 of National Instrument 43-101.
- 7 I accept professional responsibility for Sections 1.8, 1.10, 1.11, 1.12, 18, 19, 21, 22, 25.6, 25.7, 26.5 of this Technical Report.
- 8 I was involved as a Qualified Person on the NI 43-101 Updated Technical Reports completed in 2020.
- As of the date of this certificate, to the best of my knowledge, information and belief, the portion of the Technical Report for which I am responsible contains all scientific and technical information that is required to be disclosed to make the portion of the Technical Report for which I am responsible not misleading.
- 10 I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated 16th March, 2023 at Reno, United States.

["signed and sealed"]

Michael lannacchione, B.Sc., P.E., MBA

Associate Principal Consultant (Mining)

SRK Consulting (U.S.), Inc.

To accompany the report entitled: "NI 43-101 Updated Technical Report on Resources and Reserves Pan Gold Project, White Pine County, Nevada" prepared for Calibre Mining Corp. dated March 16, 2023 with an effective date of December 31, 2022 (the "Technical Report").

- I, Valerie Sawyer, B.Sc., RM-SME, do hereby certify that:
- 1 I am a Principal Consultant (Environmental) with the firm of SRK Consulting (U.S.), Inc. with an office at 1250 Lamoille Highway, Suite 520, Elko, Nevada 89801, United States.
- I am a graduate of Michigan Technological University in 1981 and received a Bachelor's degree in metallurgical engineering from Michigan Technological University, United States. I have practiced my profession continuously since 1981. I have worked as a metallurgical engineer and environmental professional for a total of 40 years since my graduation from university in federal, state, and local mine environmental permitting and compliance and metallurgical engineering in the western United States.
- I am a Registered Member in good standing of the Society for Mining, Metallurgy, and Exploration, Member No. RM 4192564.
- I have visited the Pan Gold property, for this Technical Report my site visit took place on January 14, 2014.
- I have read the definition of "Qualified Person" set out in National Instrument 43-101 and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of National Instrument 43-101 and this technical report has been prepared in compliance with National Instrument 43-101 and Form 43 101F1.
- As a Qualified Person, I am independent of the issuer as defined in Section 1.5 of National Instrument 43-101.
- I accept professional responsibility for Sections 1.9, 4.4, 20, and 25.5 of this Technical Report.
- 8 I was involved and a Qualified Person on the NI 43-101 Updated Technical Reports completed in 2017 and 2021.
- As of the date of this certificate, to the best of my knowledge, information and belief, the portion of the Technical Report for which I am responsible contains all scientific and technical information that is required to be disclosed to make the portion of the Technical Report for which I am responsible not misleading.
- 10 I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated 16<sup>th</sup> March, 2023 at Elgin, Arizona United States.

my other use is not authorized. ["signed and sealed"]

Valerie Sawyer, B.Sc., RM-SME

Principal Consultant (Environmental)

This signature was scanned with the author's approval for exclusive use in this goeument;

SRK Consulting (U.S.), Inc.



To accompany the report entitled: "NI 43-101 Updated Technical Report on Resources and Reserves Pan Gold Project, White Pine County, Nevada" prepared for Calibre Mining Corp. dated March 16, 2023, with an effective date of December 31, 2022 (the "Technical Report").

I, Adrian Dance, P.Eng., do hereby certify that:

- I am a Principal Consultant with the firm SRK Consulting (Canada) Inc., which has an office at 2600 320 Granville Street, Vancouver, British Columbia, V6C 1S9, Canada.
- I am a graduate of the University of British Columbia in 1987 where I obtained a Bachelor of Applied Science and a graduate of the University of Queensland in 1992 where I obtained a Doctorate. I have practiced my profession continuously since 1992 including twenty years as a consultant and have experience working in a number of gold operations around the world.
- I am a Professional Engineer registered with the Association of Professional Engineers & Geoscientists of British Columbia, license # 37151.
- I have visited the Pan Gold property for this Technical Report, my site visit took place on December 6, 2022.
- I have read the definition of "qualified person" set out in National Instrument 43-101 *Standards of Disclosure for Mineral Projects* ("NI 43-101") and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- As a Qualified Person, I am independent of the issuer as defined in Section 1.5 of NI 43-101.
- I accept professional responsibility for portions of Sections 1, all of Sections 13 and 17, and portions of Sections 25 and 26 of the Technical Report.
- I have not been involved in previous studies and technical reports issued regarding the subject property.
- As of the date of this certificate, to the best of my knowledge, information and belief, the portion of the Technical Report for which I am responsible contains all scientific and technical information that is required to be disclosed to make the portion of the Technical Report for which I am responsible not misleading.
- 10 I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated this 16<sup>th</sup> March 2023, in Vancouver, British Columbia, Canada.

The author has given permission to

rdance with the disclovure

["signed and sealed"]

its use for this part!

Dr. Adrian Dance, PEng. (BC # 37151), FAusIMM Principal Consultant - Metallurgy SRK Consulting (Canada) Inc.

To accompany the report entitled: "NI 43-101 Updated Technical Report on Resources and Reserves Pan Gold Project, White Pine County, Nevada" prepared for Calibre Mining Corp. dated March 16, 2023 with an effective date of December 31, 2022 (the "Technical Report").

- I, Andy Thomas, M.Eng., P.Eng.
- I am a Principal Consultant (Rock Mechanics) with the firm of SRK Consulting (Canada), Inc. with an office at 2600-320 Granville Street, Vancouver, BC, V6C 1S9.
- I am a graduate of The University of Adelaide in 2004 where I obtained a Bachelor of Engineering (Civil & Environmental) and a Bachelor of Science (Geology). I am also a graduate of The University of British Columbia in 2014 where I obtained a Master of Engineering (Geological). Aside from the time spent studying my postgraduate degree, I have practiced my profession continuously since 2005. My relevant experience includes geotechnical investigations and geotechnical assessments for open pit and underground mining projects internationally. Additionally, I have been a contributor to several precious and base metal technical reports.
- I am a Professional Engineer registered with the Engineers and Geoscientists British Columbia, license #44961
- I have visited the Pan Gold property, for this Technical Report my site visit took place on December 6, 2022.
- I have read the definition of "Qualified Person" set out in National Instrument 43-101 and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of National Instrument 43-101 and this technical report has been prepared in compliance with National Instrument 43-101 and Form 43 101F1.
- As a Qualified Person, I am independent of the issuer as defined in Section 1.5 of National Instrument 43-101.
- 7 I accept professional responsibility for Sections 16.2.1 and 26.3 of this Technical Report.
- 8 I was involved in the NI 43-101 Updated Technical Report completed in 2021.
- As of the date of this certificate, to the best of my knowledge, information and belief, the portion of the Technical Report for which I am responsible contains all scientific and technical information that is required to be disclosed to make the portion of the Technical Report for which I am responsible not misleading.
- 10 I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated 16<sup>th</sup> March, 2023 at Vancouver, Canada.

["signed and sealed"]
Andy Thomas, M.Eng., P.Eng.

Principal Consultant (Rock Mechanics)

SRK Consulting (Canada), Inc.

| Appendix B | Mineral Claims |  |
|------------|----------------|--|
|            |                |  |
|            |                |  |
|            |                |  |
|            |                |  |

Appendices

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC1031802   | PR 1       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1031803   | PR 2       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1031804   | PR 3       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1031805   | PR 4       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1031806   | PR 5       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1031807   | PR 6       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1031808   | PR 7       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1031809   | PR 8       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1031810   | PR 9       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057236   | PC 1       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057237   | PC 2       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057238   | PC 3       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057239   | PC 4       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057240   | PC 5       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057241   | PC 6       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057242   | PC 7       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057243   | PC 8       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057244   | PC 9       | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057245   | PC 10      | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057246   | PC 11      | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057247   | PC 12      | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057248   | PC 13      | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057249   | PC 14      | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057250   | PC 15      | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057251   | PC 16      | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057252   | PC 17      | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057253   | PC 18      | 8/31/2017       | Nevada Royalty Corp. |
| NMC1057254   | PC 20      | 8/31/2017       | Nevada Royalty Corp. |
| NMC1102847   | NC 125     | 8/31/2017       | Nevada Royalty Corp. |
| NMC1102848   | NC 134     | 8/31/2017       | Nevada Royalty Corp. |
| NMC1102849   | PAN 114    | 8/31/2017       | Nevada Royalty Corp. |
| NMC1102850   | PAN 121    | 8/31/2017       | Nevada Royalty Corp. |
| NMC1102851   | LAT 48     | 8/31/2017       | Nevada Royalty Corp. |
| NMC205565    | PAN #119   | 8/31/2017       | Nevada Royalty Corp. |
| NMC37169     | PAN # 37   | 8/31/2017       | Nevada Royalty Corp. |
| NMC37170     | PAN # 38   | 8/31/2017       | Nevada Royalty Corp. |
| NMC37172     | PAN # 63   | 8/31/2017       | Nevada Royalty Corp. |
| NMC37173     | PAN # 65   | 8/31/2017       | Nevada Royalty Corp. |
| NMC37174     | PAN # 67   | 8/31/2017       | Nevada Royalty Corp. |
| NMC37175     | PAN # 69   | 8/31/2017       | Nevada Royalty Corp. |
| NMC427129    | PE #50     | 8/31/2017       | Nevada Royalty Corp. |
| NMC427131    | PE #52     | 8/31/2017       | Nevada Royalty Corp. |
| NMC427133    | PE #54     | 8/31/2017       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC57946     | PAN # 71   | 8/31/2017       | Nevada Royalty Corp. |
| NMC57947     | PAN # 72   | 8/31/2017       | Nevada Royalty Corp. |
| NMC57948     | PAN # 73   | 8/31/2017       | Nevada Royalty Corp. |
| NMC57949     | PAN # 74   | 8/31/2017       | Nevada Royalty Corp. |
| NMC61102     | PAN # 22   | 8/31/2017       | Nevada Royalty Corp. |
| NMC61103     | PAN # 23   | 8/31/2017       | Nevada Royalty Corp. |
| NMC61104     | PAN # 24   | 8/31/2017       | Nevada Royalty Corp. |
| NMC61105     | PAN # 25   | 8/31/2017       | Nevada Royalty Corp. |
| NMC61106     | PAN # 26   | 8/31/2017       | Nevada Royalty Corp. |
| NMC61107     | PAN # 27   | 8/31/2017       | Nevada Royalty Corp. |
| NMC61108     | PAN # 28   | 8/31/2017       | Nevada Royalty Corp. |
| NMC61114     | PAN # 34   | 8/31/2017       | Nevada Royalty Corp. |
| NMC61115     | PAN # 35   | 8/31/2017       | Nevada Royalty Corp. |
| NMC61116     | PAN # 36   | 8/31/2017       | Nevada Royalty Corp. |
| NMC630283    | PA 8A      | 8/31/2017       | Nevada Royalty Corp. |
| NMC630284    | PA 10      | 8/31/2017       | Nevada Royalty Corp. |
| NMC630285    | PA 12      | 8/31/2017       | Nevada Royalty Corp. |
| NMC630286    | PA 13      | 8/31/2017       | Nevada Royalty Corp. |
| NMC630287    | PA 14      | 8/31/2017       | Nevada Royalty Corp. |
| NMC630288    | PA 15      | 8/31/2017       | Nevada Royalty Corp. |
| NMC630289    | PA 16      | 8/31/2017       | Nevada Royalty Corp. |
| NMC630290    | PA 17      | 8/31/2017       | Nevada Royalty Corp. |
| NMC630291    | PA 18      | 8/31/2017       | Nevada Royalty Corp. |
| NMC630323    | PA 49A     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815131    | LAT 9      | 8/31/2017       | Nevada Royalty Corp. |
| NMC815132    | LAT 10     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815133    | LAT 11     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815134    | LAT 12     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815135    | LAT 13     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815136    | LAT 14     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815137    | LAT 15     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815138    | LAT 16     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815139    | LAT 17     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815140    | LAT 18     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815141    | LAT 19     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815142    | LAT 20     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815143    | LAT 21     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815144    | LAT 22     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815145    | LAT 23     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815146    | LAT 24     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815147    | LAT 25     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815148    | LAT 26     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815149    | LAT 27     | 8/31/2017       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC815150    | LAT 28     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815151    | LAT 29     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815152    | LAT 30     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815153    | LAT 31     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815154    | LAT 32     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815155    | LAT 33     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815156    | LAT 34     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815157    | LAT 35     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815158    | LAT 36     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815159    | LAT 37     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815160    | LAT 38     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815161    | LAT 40     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815162    | LAT 42     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815163    | LAT 44     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815164    | LAT 46     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815166    | LAT 49     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815167    | LAT 50     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815168    | LAT 51     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815169    | LAT 52     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815170    | LAT 53     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815171    | LAT 54     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815172    | LAT 55     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815173    | LAT 56     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815174    | LAT 57     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815175    | LAT 58     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815176    | LAT 59     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815177    | LAT 60     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815178    | LAT 47     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815179    | LAT 61     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815180    | LAT 62     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815181    | LAT 63     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815182    | LAT 64     | 8/31/2017       | Nevada Royalty Corp. |
| NMC815183    | LAT 65     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958546    | NC 30      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958547    | NC 31      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958548    | NC 32      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958549    | NC 33      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958550    | NC 34      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958551    | NC 35      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958552    | NC 36      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958553    | NC 37      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958554    | NC 38      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958555    | NC 39      | 8/31/2017       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC958556    | NC 40      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958557    | NC 41      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958558    | NC 42      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958559    | NC 43      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958560    | NC 44      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958561    | NC 45      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958562    | NC 46      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958563    | NC 47      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958564    | NC 48      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958565    | NC 49      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958566    | NC 50      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958567    | NC 51      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958568    | NC 52      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958575    | NC 59      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958576    | NC 60      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958577    | NC 61      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958578    | NC 62      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958579    | NC 63      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958580    | NC 64      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958581    | NC 65      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958582    | NC 66      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958583    | NC 67      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958584    | NC 68      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958585    | NC 69      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958586    | NC 70      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958587    | NC 71      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958588    | NC 72      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958610    | NC 94      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958611    | NC 95      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958612    | NC 96      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958613    | NC 97      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958614    | NC 98      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958615    | NC 99      | 8/31/2017       | Nevada Royalty Corp. |
| NMC958616    | NC 100     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958617    | NC 101     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958618    | NC 102     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958619    | NC 103     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958620    | NC 104     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958621    | NC 105     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958622    | NC 106     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958623    | NC 107     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958624    | NC 108     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958625    | NC 109     | 8/31/2017       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC958626    | NC 110     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958627    | NC 111     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958628    | NC 112     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958629    | NC 113     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958630    | NC 114     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958631    | NC 115     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958632    | NC 116     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958633    | NC 117     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958634    | NC 118     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958635    | NC 119     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958636    | NC 120     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958637    | NC 121     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958638    | NC 124     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958640    | NC 126     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958641    | NC 127     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958642    | NC 128     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958643    | NC 129     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958644    | NC 130     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958645    | NC 133     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958647    | NC 135     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958648    | NC 136     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958649    | NC 137     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958650    | NC 138     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958651    | NC 139     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958652    | NC 142     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958653    | NC 143     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958654    | NC 144     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958655    | NC 145     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958656    | NC 146     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958657    | NC 149     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958658    | NC 150     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958659    | NC 151     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958660    | NC 152     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958661    | NC 153     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958662    | NC 154     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958663    | NC 157     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958664    | NC 158     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958665    | NC 159     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958666    | NC 160     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958667    | NC 161     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958668    | NC 162     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958669    | NC 165     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958670    | NC 166     | 8/31/2017       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC958671    | NC 167     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958672    | NC 168     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958673    | NC 169     | 8/31/2017       | Nevada Royalty Corp. |
| NMC958674    | NC 170     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980710    | CT 30      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980711    | CT 31      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980712    | CT 32      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980713    | CT 33      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980714    | CT 34      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980715    | CT 35      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980716    | CT 38      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980717    | CT 39      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980718    | CT 40      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980719    | CT 41      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980720    | CT 42      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980721    | CT 43      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980722    | CT 46      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980723    | CT 47      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980724    | CT 48      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980725    | CT 49      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980726    | CT 50      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980727    | CT 51      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980728    | PETER 1    | 8/31/2017       | Nevada Royalty Corp. |
| NMC980729    | PETER 2    | 8/31/2017       | Nevada Royalty Corp. |
| NMC980730    | PETER 3    | 8/31/2017       | Nevada Royalty Corp. |
| NMC980731    | PETER 4    | 8/31/2017       | Nevada Royalty Corp. |
| NMC980732    | PETER 5    | 8/31/2017       | Nevada Royalty Corp. |
| NMC980733    | PETER 6    | 8/31/2017       | Nevada Royalty Corp. |
| NMC980734    | PETER 7    | 8/31/2017       | Nevada Royalty Corp. |
| NMC980735    | PETER 8    | 8/31/2017       | Nevada Royalty Corp. |
| NMC980736    | PETER 9    | 8/31/2017       | Nevada Royalty Corp. |
| NMC980737    | PETER 10   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980738    | PETER 11   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980739    | PETER 12   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980740    | PETER 13   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980741    | PETER 14   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980742    | PETER 15   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980743    | PETER 16   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980744    | PETER 17   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980745    | PETER 18   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980746    | PETER 19   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980747    | PETER 20   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980748    | PETER 21   | 8/31/2017       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC980749    | PETER 22   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980750    | PETER 23   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980751    | PETER 24   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980752    | PETER 25   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980753    | PETER 26   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980754    | PETER 27   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980755    | PETER 28   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980756    | PETER 29   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980757    | PETER 30   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980758    | PETER 31   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980759    | PETER 32   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980760    | PETER 33   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980761    | PETER 34   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980762    | PETER 35   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980763    | PETER 36   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980764    | PETER 37   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980765    | PETER 38   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980766    | PETER 39   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980767    | PETER 40   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980768    | PETER 41   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980769    | PETER 42   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980770    | PETER 43   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980771    | PETER 44   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980772    | PETER 45   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980773    | PETER 46   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980774    | PETER 47   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980775    | PETER 48   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980776    | PETER 49   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980777    | PETER 50   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980778    | PETER 51   | 8/31/2017       | Nevada Royalty Corp. |
| NMC980779    | BSW 38     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980780    | BSW 39     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980781    | BSW 40     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980782    | BSW 41     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980783    | BSW 42     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980784    | BSW 43     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980785    | BSW 44     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980786    | BSW 45     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980787    | BSW 1      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980788    | BSW 2      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980789    | BSW 3      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980790    | BSW 4      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980791    | BSW 5      | 8/31/2017       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC980792    | BSW 6      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980793    | BSW 7      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980794    | BSW 8      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980795    | BSW 9      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980796    | BSW 10     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980797    | BSW 11     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980798    | BSW 12     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980799    | BSW 13     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980800    | BSW 14     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980801    | BSW 15     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980802    | BSW 16     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980803    | BSW 17     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980804    | BSW 18     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980805    | BSW 19     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980806    | BSW 20     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980807    | BSW 21     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980808    | BSW 22     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980809    | BSW 23     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980810    | BSW 24     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980811    | BSW 25     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980812    | BSW 26     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980813    | BSW 27     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980814    | BSW 28     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980815    | BSW 29     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980816    | BSW 30     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980817    | BSW 31     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980818    | BSW 32     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980819    | BSW 33     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980820    | BSW 34     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980821    | BSW 35     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980822    | BSW 36     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980823    | BSW 37     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980824    | BSW 46     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980825    | BSW 47     | 8/31/2017       | Nevada Royalty Corp. |
| NMC980826    | PA 19      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980827    | PA 21      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980828    | PA 44      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980829    | PA 46      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980830    | PA 48      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980831    | PE 56      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980832    | NP 1       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980833    | NP 2       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980834    | NP 3       | 8/31/2017       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC980835    | NP 4       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980836    | NP 5       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980837    | NP 6       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980838    | NP 7       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980839    | NP 8       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980840    | NP 9       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980841    | NP 10      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980842    | NP 11      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980843    | NP 12      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980844    | NP 13      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980845    | NP 14      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980846    | NP 15      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980847    | NP 16      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980848    | NP 17      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980849    | NP 18      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980850    | NP 19      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980851    | NP 20      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980852    | NP 21      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980853    | NP 22      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980854    | NP 23      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980855    | NP 24      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980856    | NP 25      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980857    | NP 26      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980858    | NP 27      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980859    | NP 28      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980860    | NP 29      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980861    | NP 30      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980862    | NP 31      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980863    | NP 32      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980864    | NP 33      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980865    | NP 34      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980866    | NP 35      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980867    | NP 36      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980868    | NP 37      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980869    | NP 38      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980870    | NP 39      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980871    | NP 40      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980872    | NP 41      | 8/31/2017       | Nevada Royalty Corp. |
| NMC980873    | ET 1       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980874    | ET 2       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980875    | ET 3       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980876    | ET 4       | 8/31/2017       | Nevada Royalty Corp. |
| NMC980877    | ET 5       | 8/31/2017       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date            | Owner                |
|--------------|------------|----------------------------|----------------------|
| NMC980878    | ET 6       | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980879    | ET 7       | 8/31/2017 Nevada Royalty ( |                      |
| NMC980880    | ET 8       | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980881    | ET 9       | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980882    | ET 10      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980883    | ET 11      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980884    | ET 12      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980885    | ET 13      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980886    | ET 14      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980887    | ET 15      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980888    | ET 16      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980889    | ET 17      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980890    | ET 18      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980891    | ET 19      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980892    | ET 20      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980893    | ET 21      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980894    | ET 22      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980895    | ET 23      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980896    | ET 24      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980897    | ET 25      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980898    | ET 26      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980899    | ET 27      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980900    | ET 28      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980901    | ET 29      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980902    | ET 30      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980903    | ET 31      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980904    | ET 32      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980905    | ET 33      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980906    | ET 34      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980907    | ET 35      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980908    | ET 36      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980909    | ET 37      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980910    | ET 38      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980911    | ET 39      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980912    | ET 40      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC980913    | ET 41      | 8/31/2017                  | Nevada Royalty Corp. |
| NMC984635    | GWEN 17    | 8/31/2017                  | Nevada Royalty Corp. |
| NMC984636    | GWEN 18    | 8/31/2017                  | Nevada Royalty Corp. |
| NMC984637    | PAN 111    | 8/31/2017                  | Nevada Royalty Corp. |
| NMC984638    | PAN 112    | 8/31/2017                  | Nevada Royalty Corp. |
| NMC984640    | PAN 120    | 8/31/2017                  | Nevada Royalty Corp. |
| NMC984642    | PAN 122    | 8/31/2017                  | Nevada Royalty Corp. |
| NMC1057292   | PC 19      | 8/31/2017                  | GRP Pan, LLC         |

| BLM Serial # | Claim Name | Expiration Date | Owner        |
|--------------|------------|-----------------|--------------|
| NMC1057293   | PC 21      | 8/31/2017       | GRP Pan, LLC |
| NMC1057294   | PC 22      | 8/31/2017       | GRP Pan, LLC |
| NMC1057295   | PC 23      | 8/31/2017       | GRP Pan, LLC |
| NMC1057296   | PC 24      | 8/31/2017       | GRP Pan, LLC |
| NMC1057297   | PC 25      | 8/31/2017       | GRP Pan, LLC |
| NMC1057298   | PC 26      | 8/31/2017       | GRP Pan, LLC |
| NMC1057299   | PC 27      | 8/31/2017       | GRP Pan, LLC |
| NMC1057300   | PC 28      | 8/31/2017       | GRP Pan, LLC |
| NMC1057301   | PC 29      | 8/31/2017       | GRP Pan, LLC |
| NMC958517    | NC 1       | 8/31/2017       | GRP Pan, LLC |
| NMC958518    | NC 2       | 8/31/2017       | GRP Pan, LLC |
| NMC958519    | NC 3       | 8/31/2017       | GRP Pan, LLC |
| NMC958520    | NC 4       | 8/31/2017       | GRP Pan, LLC |
| NMC958521    | NC 5       | 8/31/2017       | GRP Pan, LLC |
| NMC958522    | NC 6       | 8/31/2017       | GRP Pan, LLC |
| NMC958523    | NC 7       | 8/31/2017       | GRP Pan, LLC |
| NMC958524    | NC 8       | 8/31/2017       | GRP Pan, LLC |
| NMC958525    | NC 9       | 8/31/2017       | GRP Pan, LLC |
| NMC958526    | NC 10      | 8/31/2017       | GRP Pan, LLC |
| NMC958527    | NC 11      | 8/31/2017       | GRP Pan, LLC |
| NMC958528    | NC 12      | 8/31/2017       | GRP Pan, LLC |
| NMC958529    | NC 13      | 8/31/2017       | GRP Pan, LLC |
| NMC958530    | NC 14      | 8/31/2017       | GRP Pan, LLC |
| NMC958531    | NC 15      | 8/31/2017       | GRP Pan, LLC |
| NMC958532    | NC 16      | 8/31/2017       | GRP Pan, LLC |
| NMC958533    | NC 17      | 8/31/2017       | GRP Pan, LLC |
| NMC958534    | NC 18      | 8/31/2017       | GRP Pan, LLC |
| NMC958535    | NC 19      | 8/31/2017       | GRP Pan, LLC |
| NMC958536    | NC 20      | 8/31/2017       | GRP Pan, LLC |
| NMC958537    | NC 21      | 8/31/2017       | GRP Pan, LLC |
| NMC958538    | NC 22      | 8/31/2017       | GRP Pan, LLC |
| NMC958539    | NC 23      | 8/31/2017       | GRP Pan, LLC |
| NMC958540    | NC 24      | 8/31/2017       | GRP Pan, LLC |
| NMC958541    | NC 25      | 8/31/2017       | GRP Pan, LLC |
| NMC958542    | NC 26      | 8/31/2017       | GRP Pan, LLC |
| NMC958543    | NC 27      | 8/31/2017       | GRP Pan, LLC |
| NMC958544    | NC 28      | 8/31/2017       | GRP Pan, LLC |
| NMC958545    | NC 29      | 8/31/2017       | GRP Pan, LLC |
| NMC958569    | NC 53      | 8/31/2017       | GRP Pan, LLC |
| NMC958570    | NC 54      | 8/31/2017       | GRP Pan, LLC |
| NMC958571    | NC 55      | 8/31/2017       | GRP Pan, LLC |
| NMC958572    | NC 56      | 8/31/2017       | GRP Pan, LLC |
| NMC958573    | NC 57      | 8/31/2017       | GRP Pan, LLC |

| BLM Serial # | Claim Name | Expiration Date | Owner        |
|--------------|------------|-----------------|--------------|
| NMC958574    | NC 58      | 8/31/2017       | GRP Pan, LLC |
| NMC958589    | NC 73      | 8/31/2017       | GRP Pan, LLC |
| NMC958590    | NC 74      | 8/31/2017       | GRP Pan, LLC |
| NMC958591    | NC 75      | 8/31/2017       | GRP Pan, LLC |
| NMC958592    | NC 76      | 8/31/2017       | GRP Pan, LLC |
| NMC958593    | NC 77      | 8/31/2017       | GRP Pan, LLC |
| NMC958594    | NC 78      | 8/31/2017       | GRP Pan, LLC |
| NMC958595    | NC 79      | 8/31/2017       | GRP Pan, LLC |
| NMC958596    | NC 80      | 8/31/2017       | GRP Pan, LLC |
| NMC958597    | NC 81      | 8/31/2017       | GRP Pan, LLC |
| NMC958598    | NC 82      | 8/31/2017       | GRP Pan, LLC |
| NMC958599    | NC 83      | 8/31/2017       | GRP Pan, LLC |
| NMC958600    | NC 84      | 8/31/2017       | GRP Pan, LLC |
| NMC958601    | NC 85      | 8/31/2017       | GRP Pan, LLC |
| NMC958602    | NC 86      | 8/31/2017       | GRP Pan, LLC |
| NMC958603    | NC 87      | 8/31/2017       | GRP Pan, LLC |
| NMC958604    | NC 88      | 8/31/2017       | GRP Pan, LLC |
| NMC958605    | NC 89      | 8/31/2017       | GRP Pan, LLC |
| NMC958606    | NC 90      | 8/31/2017       | GRP Pan, LLC |
| NMC958607    | NC 91      | 8/31/2017       | GRP Pan, LLC |
| NMC958608    | NC 92      | 8/31/2017       | GRP Pan, LLC |
| NMC958609    | NC 93      | 8/31/2017       | GRP Pan, LLC |
| NMC965337    | GWEN 1     | 8/31/2017       | GRP Pan, LLC |
| NMC965338    | GWEN 2     | 8/31/2017       | GRP Pan, LLC |
| NMC965339    | GWEN 3     | 8/31/2017       | GRP Pan, LLC |
| NMC965340    | GWEN 4     | 8/31/2017       | GRP Pan, LLC |
| NMC965341    | GWEN 5     | 8/31/2017       | GRP Pan, LLC |
| NMC965342    | GWEN 6     | 8/31/2017       | GRP Pan, LLC |
| NMC965343    | GWEN 7     | 8/31/2017       | GRP Pan, LLC |
| NMC965344    | GWEN 8     | 8/31/2017       | GRP Pan, LLC |
| NMC965345    | GWEN 9     | 8/31/2017       | GRP Pan, LLC |
| NMC965346    | GWEN 10    | 8/31/2017       | GRP Pan, LLC |
| NMC973536    | REE-81     | 8/31/2017       | GRP Pan, LLC |
| NMC973537    | REE-82     | 8/31/2017       | GRP Pan, LLC |
| NMC977345    | GWEN 49    | 8/31/2017       | GRP Pan, LLC |
| NMC977346    | GWEN 50    | 8/31/2017       | GRP Pan, LLC |
| NMC977347    | GWEN 51    | 8/31/2017       | GRP Pan, LLC |
| NMC977350    | GWEN 54    | 8/31/2017       | GRP Pan, LLC |
| NMC977351    | GWEN 55    | 8/31/2017       | GRP Pan, LLC |
| NMC977352    | GWEN 58    | 8/31/2017       | GRP Pan, LLC |
| NMC977353    | GWEN 59    | 8/31/2017       | GRP Pan, LLC |
| NMC977354    | GWEN 60    | 8/31/2017       | GRP Pan, LLC |
| NMC977355    | GWEN 61    | 8/31/2017       | GRP Pan, LLC |

| BLM Serial # | Claim Name | Expiration Date | Owner        |
|--------------|------------|-----------------|--------------|
| NMC977356    | GWEN 62    | 8/31/2017       | GRP Pan, LLC |
| NMC977357    | GWEN 63    | 8/31/2017       | GRP Pan, LLC |
| NMC977358    | GWEN 64    | 8/31/2017       | GRP Pan, LLC |
| NMC977359    | GWEN 65    | 8/31/2017       | GRP Pan, LLC |
| NMC984556    | GWEN 19    | 8/31/2017       | GRP Pan, LLC |
| NMC984557    | GWEN 20    | 8/31/2017       | GRP Pan, LLC |
| NMC984558    | GWEN 21    | 8/31/2017       | GRP Pan, LLC |
| NMC984559    | GWEN 22    | 8/31/2017       | GRP Pan, LLC |
| NMC984560    | GWEN 23    | 8/31/2017       | GRP Pan, LLC |
| NMC984561    | GWEN 24    | 8/31/2017       | GRP Pan, LLC |
| NMC984562    | GWEN 25    | 8/31/2017       | GRP Pan, LLC |
| NMC984563    | GWEN 26    | 8/31/2017       | GRP Pan, LLC |
| NMC984564    | GWEN 27    | 8/31/2017       | GRP Pan, LLC |
| NMC984565    | GWEN 28    | 8/31/2017       | GRP Pan, LLC |
| NMC984566    | GWEN 29    | 8/31/2017       | GRP Pan, LLC |
| NMC984567    | GWEN 30    | 8/31/2017       | GRP Pan, LLC |
| NMC984568    | GWEN 31    | 8/31/2017       | GRP Pan, LLC |
| NMC984569    | GWEN 32    | 8/31/2017       | GRP Pan, LLC |
| NMC984570    | GWEN 33    | 8/31/2017       | GRP Pan, LLC |
| NMC984571    | GWEN 34    | 8/31/2017       | GRP Pan, LLC |
| NMC984572    | GWEN 35    | 8/31/2017       | GRP Pan, LLC |
| NMC984573    | GWEN 36    | 8/31/2017       | GRP Pan, LLC |
| NMC984574    | GWEN 37    | 8/31/2017       | GRP Pan, LLC |
| NMC984575    | GWEN 38    | 8/31/2017       | GRP Pan, LLC |
| NMC984576    | GWEN 39    | 8/31/2017       | GRP Pan, LLC |
| NMC984577    | GWEN 40    | 8/31/2017       | GRP Pan, LLC |
| NMC984578    | GWEN 41    | 8/31/2017       | GRP Pan, LLC |
| NMC984579    | GWEN 42    | 8/31/2017       | GRP Pan, LLC |
| NMC984580    | GWEN 43    | 8/31/2017       | GRP Pan, LLC |
| NMC984581    | GWEN 44    | 8/31/2017       | GRP Pan, LLC |
| NMC984582    | GWEN 45    | 8/31/2017       | GRP Pan, LLC |
| NMC984583    | GWEN 46    | 8/31/2017       | GRP Pan, LLC |
| NMC984584    | GWEN 47    | 8/31/2017       | GRP Pan, LLC |
| NMC984585    | GWEN 48    | 8/31/2017       | GRP Pan, LLC |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC1031802   | PR 1       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1031803   | PR 2       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1031804   | PR 3       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1031805   | PR 4       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1031806   | PR 5       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1031807   | PR 6       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1031808   | PR 7       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1031809   | PR 8       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1031810   | PR 9       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057236   | PC 1       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057237   | PC 2       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057238   | PC 3       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057239   | PC 4       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057240   | PC 5       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057241   | PC 6       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057242   | PC 7       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057243   | PC 8       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057244   | PC 9       | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057245   | PC 10      | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057246   | PC 11      | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057247   | PC 12      | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057248   | PC 13      | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057249   | PC 14      | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057250   | PC 15      | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057251   | PC 16      | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057252   | PC 17      | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057253   | PC 18      | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057254   | PC 20      | 8/31/2021       | Nevada Royalty Corp. |
| NMC1102847   | NC 125     | 8/31/2021       | Nevada Royalty Corp. |
| NMC1102848   | NC 134     | 8/31/2021       | Nevada Royalty Corp. |
| NMC1102849   | PAN 114    | 8/31/2021       | Nevada Royalty Corp. |
| NMC1102850   | PAN 121    | 8/31/2021       | Nevada Royalty Corp. |
| NMC1102851   | LAT 48     | 8/31/2021       | Nevada Royalty Corp. |
| NMC205565    | PAN #119   | 8/31/2021       | Nevada Royalty Corp. |
| NMC37169     | PAN # 37   | 8/31/2021       | Nevada Royalty Corp. |
| NMC37170     | PAN # 38   | 8/31/2021       | Nevada Royalty Corp. |
| NMC37172     | PAN # 63   | 8/31/2021       | Nevada Royalty Corp. |
| NMC37173     | PAN # 65   | 8/31/2021       | Nevada Royalty Corp. |
| NMC37174     | PAN # 67   | 8/31/2021       | Nevada Royalty Corp. |
| NMC37175     | PAN # 69   | 8/31/2021       | Nevada Royalty Corp. |
| NMC427129    | PE # 50    | 8/31/2021       | Nevada Royalty Corp. |
| NMC427131    | PE # 52    | 8/31/2021       | Nevada Royalty Corp. |
| NMC427133    | PE # 54    | 8/31/2021       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC57946     | PAN # 71   | 8/31/2021       | Nevada Royalty Corp. |
| NMC57947     | PAN # 72   | 8/31/2021       | Nevada Royalty Corp. |
| NMC57948     | PAN # 73   | 8/31/2021       | Nevada Royalty Corp. |
| NMC57949     | PAN # 74   | 8/31/2021       | Nevada Royalty Corp. |
| NMC61102     | PAN # 22   | 8/31/2021       | Nevada Royalty Corp. |
| NMC61103     | PAN # 23   | 8/31/2021       | Nevada Royalty Corp. |
| NMC61104     | PAN # 24   | 8/31/2021       | Nevada Royalty Corp. |
| NMC61105     | PAN # 25   | 8/31/2021       | Nevada Royalty Corp. |
| NMC61106     | PAN # 26   | 8/31/2021       | Nevada Royalty Corp. |
| NMC61107     | PAN # 27   | 8/31/2021       | Nevada Royalty Corp. |
| NMC61108     | PAN # 28   | 8/31/2021       | Nevada Royalty Corp. |
| NMC61114     | PAN # 34   | 8/31/2021       | Nevada Royalty Corp. |
| NMC61115     | PAN # 35   | 8/31/2021       | Nevada Royalty Corp. |
| NMC61116     | PAN # 36   | 8/31/2021       | Nevada Royalty Corp. |
| NMC630283    | PA 8A      | 8/31/2021       | Nevada Royalty Corp. |
| NMC630284    | PA 10      | 8/31/2021       | Nevada Royalty Corp. |
| NMC630285    | PA 12      | 8/31/2021       | Nevada Royalty Corp. |
| NMC630286    | PA 13      | 8/31/2021       | Nevada Royalty Corp. |
| NMC630287    | PA 14      | 8/31/2021       | Nevada Royalty Corp. |
| NMC630288    | PA 15      | 8/31/2021       | Nevada Royalty Corp. |
| NMC630289    | PA 16      | 8/31/2021       | Nevada Royalty Corp. |
| NMC630290    | PA 17      | 8/31/2021       | Nevada Royalty Corp. |
| NMC630291    | PA 18      | 8/31/2021       | Nevada Royalty Corp. |
| NMC630323    | PA 49A     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815131    | LAT 9      | 8/31/2021       | Nevada Royalty Corp. |
| NMC815132    | LAT 10     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815133    | LAT 11     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815134    | LAT 12     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815135    | LAT 13     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815136    | LAT 14     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815137    | LAT 15     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815138    | LAT 16     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815139    | LAT 17     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815140    | LAT 18     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815141    | LAT 19     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815142    | LAT 20     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815143    | LAT 21     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815144    | LAT 22     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815145    | LAT 23     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815146    | LAT 24     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815147    | LAT 25     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815148    | LAT 26     | 8/31/2021       | Nevada Royalty Corp. |
| NMC815149    | LAT 27     | 8/31/2021       | Nevada Royalty Corp. |

| BLM Serial #           | Claim Name     | Expiration Date        | Owner                                        |
|------------------------|----------------|------------------------|----------------------------------------------|
| NMC815150              | LAT 28         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815151              | LAT 29         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815152              | LAT 30         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815153              | LAT 31         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815154              | LAT 32         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815155              | LAT 33         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815156              | LAT 34         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815157              | LAT 35         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815158              | LAT 36         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815159              | LAT 37         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815160              | LAT 38         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815161              | LAT 40         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815162              | LAT 42         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815163              | LAT 44         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815164              | LAT 46         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815166              | LAT 49         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815167              | LAT 50         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815168              | LAT 51         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815169              | LAT 52         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815170              | LAT 53         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815171              | LAT 54         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815172              | LAT 55         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815173              | LAT 56         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815174              | LAT 57         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815175              | LAT 58         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815176              | LAT 59         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815177              | LAT 60         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815178              | LAT 47         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815179              | LAT 61         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815180              | LAT 62         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815181              | LAT 63         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815182              | LAT 64         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC815183              | LAT 65         | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC958546              | NC 30          | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC958547              | NC 31          | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC958548              | NC 32          | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC958549              | NC 33          | 8/31/2021              | Nevada Royalty Corp.                         |
| NMC958550              |                |                        |                                              |
| NMC958551              | NC 34          | 8/31/2021              | Nevada Royalty Corp.                         |
|                        | NC 34<br>NC 35 | 8/31/2021<br>8/31/2021 | Nevada Royalty Corp.<br>Nevada Royalty Corp. |
| NMC958552              |                |                        |                                              |
| NMC958552<br>NMC958553 | NC 35          | 8/31/2021              | Nevada Royalty Corp.                         |
|                        | NC 35<br>NC 36 | 8/31/2021<br>8/31/2021 | Nevada Royalty Corp.<br>Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC958556    | NC 40      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958557    | NC 41      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958558    | NC 42      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958559    | NC 43      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958560    | NC 44      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958561    | NC 45      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958562    | NC 46      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958563    | NC 47      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958564    | NC 48      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958565    | NC 49      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958566    | NC 50      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958567    | NC 51      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958568    | NC 52      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958575    | NC 59      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958576    | NC 60      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958577    | NC 61      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958578    | NC 62      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958579    | NC 63      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958580    | NC 64      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958581    | NC 65      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958582    | NC 66      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958583    | NC 67      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958584    | NC 68      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958585    | NC 69      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958586    | NC 70      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958587    | NC 71      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958588    | NC 72      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958610    | NC 94      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958611    | NC 95      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958612    | NC 96      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958613    | NC 97      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958614    | NC 98      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958615    | NC 99      | 8/31/2021       | Nevada Royalty Corp. |
| NMC958616    | NC 100     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958617    | NC 101     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958618    | NC 102     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958619    | NC 103     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958620    | NC 104     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958621    | NC 105     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958622    | NC 106     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958623    | NC 107     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958624    | NC 108     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958625    | NC 109     | 8/31/2021       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC958626    | NC 110     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958627    | NC 111     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958628    | NC 112     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958629    | NC 113     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958630    | NC 114     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958631    | NC 115     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958632    | NC 116     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958633    | NC 117     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958634    | NC 118     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958635    | NC 119     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958636    | NC 120     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958637    | NC 121     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958638    | NC 124     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958640    | NC 126     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958641    | NC 127     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958642    | NC 128     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958643    | NC 129     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958644    | NC 130     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958645    | NC 133     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958647    | NC 135     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958648    | NC 136     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958649    | NC 137     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958650    | NC 138     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958651    | NC 139     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958652    | NC 142     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958653    | NC 143     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958654    | NC 144     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958655    | NC 145     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958656    | NC 146     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958657    | NC 149     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958658    | NC 150     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958659    | NC 151     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958660    | NC 152     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958661    | NC 153     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958662    | NC 154     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958663    | NC 157     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958664    | NC 158     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958665    | NC 159     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958666    | NC 160     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958667    | NC 161     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958668    | NC 162     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958669    | NC 165     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958670    | NC 166     | 8/31/2021       | Nevada Royalty Corp. |

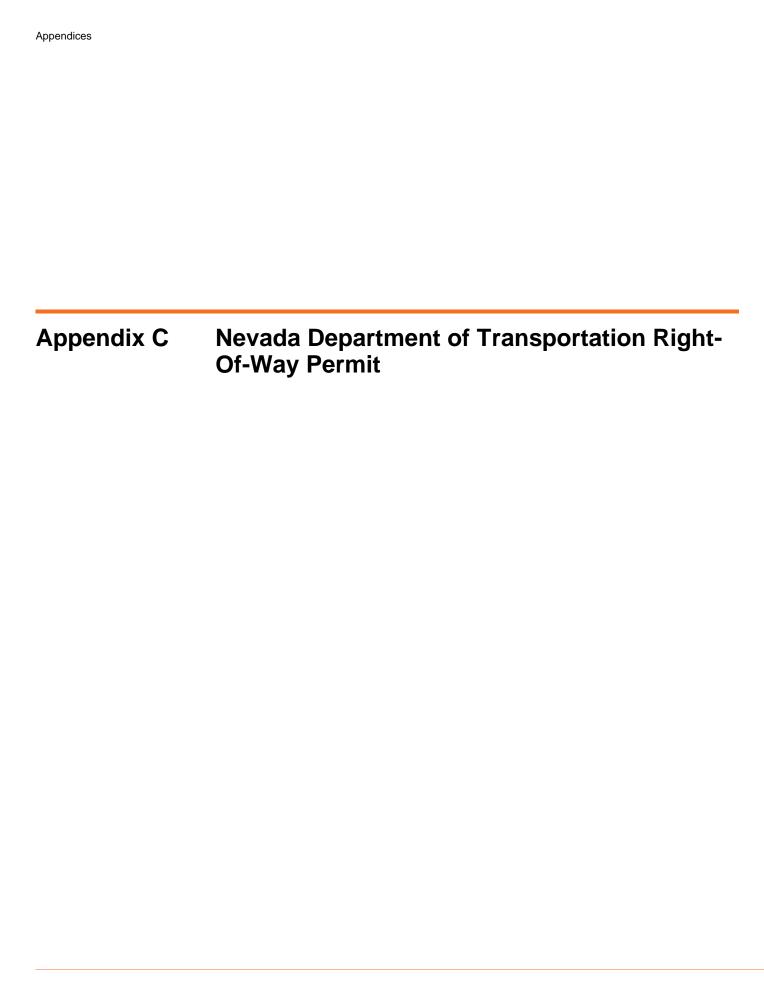
| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC958671    | NC 167     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958672    | NC 168     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958673    | NC 169     | 8/31/2021       | Nevada Royalty Corp. |
| NMC958674    | NC 170     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980710    | CT 30      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980711    | CT 31      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980712    | CT 32      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980713    | CT 33      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980714    | CT 34      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980715    | CT 35      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980716    | CT 38      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980717    | CT 39      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980718    | CT 40      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980719    | CT 41      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980720    | CT 42      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980721    | CT 43      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980722    | CT 46      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980723    | CT 47      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980724    | CT 48      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980725    | CT 49      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980726    | CT 50      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980727    | CT 51      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980728    | PETER 1    | 8/31/2021       | Nevada Royalty Corp. |
| NMC980729    | PETER 2    | 8/31/2021       | Nevada Royalty Corp. |
| NMC980730    | PETER 3    | 8/31/2021       | Nevada Royalty Corp. |
| NMC980731    | PETER 4    | 8/31/2021       | Nevada Royalty Corp. |
| NMC980732    | PETER 5    | 8/31/2021       | Nevada Royalty Corp. |
| NMC980733    | PETER 6    | 8/31/2021       | Nevada Royalty Corp. |
| NMC980734    | PETER 7    | 8/31/2021       | Nevada Royalty Corp. |
| NMC980735    | PETER 8    | 8/31/2021       | Nevada Royalty Corp. |
| NMC980736    | PETER 9    | 8/31/2021       | Nevada Royalty Corp. |
| NMC980737    | PETER 10   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980738    | PETER 11   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980739    | PETER 12   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980740    | PETER 13   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980741    | PETER 14   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980742    | PETER 15   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980743    | PETER 16   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980744    | PETER 17   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980745    | PETER 18   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980746    | PETER 19   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980747    | PETER 20   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980748    | PETER 21   | 8/31/2021       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC980749    | PETER 22   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980750    | PETER 23   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980751    | PETER 24   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980752    | PETER 25   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980753    | PETER 26   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980754    | PETER 27   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980755    | PETER 28   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980756    | PETER 29   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980757    | PETER 30   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980758    | PETER 31   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980759    | PETER 32   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980760    | PETER 33   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980761    | PETER 34   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980762    | PETER 35   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980763    | PETER 36   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980764    | PETER 37   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980765    | PETER 38   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980766    | PETER 39   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980767    | PETER 40   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980768    | PETER 41   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980769    | PETER 42   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980770    | PETER 43   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980771    | PETER 44   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980772    | PETER 45   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980773    | PETER 46   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980774    | PETER 47   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980775    | PETER 48   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980776    | PETER 49   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980777    | PETER 50   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980778    | PETER 51   | 8/31/2021       | Nevada Royalty Corp. |
| NMC980779    | BSW 38     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980780    | BSW 39     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980781    | BSW 40     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980782    | BSW 41     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980783    | BSW 42     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980784    | BSW 43     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980785    | BSW 44     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980786    | BSW 45     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980787    | BSW 1      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980788    | BSW 2      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980789    | BSW 3      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980790    | BSW 4      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980791    | BSW 5      | 8/31/2021       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC980792    | BSW 6      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980793    | BSW 7      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980794    | BSW 8      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980795    | BSW 9      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980796    | BSW 10     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980797    | BSW 11     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980798    | BSW 12     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980799    | BSW 13     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980800    | BSW 14     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980801    | BSW 15     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980802    | BSW 16     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980803    | BSW 17     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980804    | BSW 18     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980805    | BSW 19     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980806    | BSW 20     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980807    | BSW 21     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980808    | BSW 22     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980809    | BSW 23     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980810    | BSW 24     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980811    | BSW 25     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980812    | BSW 26     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980813    | BSW 27     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980814    | BSW 28     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980815    | BSW 29     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980816    | BSW 30     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980817    | BSW 31     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980818    | BSW 32     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980819    | BSW 33     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980820    | BSW 34     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980821    | BSW 35     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980822    | BSW 36     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980823    | BSW 37     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980824    | BSW 46     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980825    | BSW 47     | 8/31/2021       | Nevada Royalty Corp. |
| NMC980826    | PA 19      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980827    | PA 21      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980828    | PA 44      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980829    | PA 46      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980830    | PA 48      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980831    | PE 56      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980832    | NP 1       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980833    | NP 2       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980834    | NP 3       | 8/31/2021       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC980835    | NP 4       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980836    | NP 5       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980837    | NP 6       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980838    | NP 7       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980839    | NP 8       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980840    | NP 9       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980841    | NP 10      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980842    | NP 11      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980843    | NP 12      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980844    | NP 13      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980845    | NP 14      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980846    | NP 15      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980847    | NP 16      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980848    | NP 17      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980849    | NP 18      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980850    | NP 19      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980851    | NP 20      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980852    | NP 21      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980853    | NP 22      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980854    | NP 23      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980855    | NP 24      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980856    | NP 25      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980857    | NP 26      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980858    | NP 27      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980859    | NP 28      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980860    | NP 29      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980861    | NP 30      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980862    | NP 31      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980863    | NP 32      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980864    | NP 33      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980865    | NP 34      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980866    | NP 35      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980867    | NP 36      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980868    | NP 37      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980869    | NP 38      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980870    | NP 39      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980871    | NP 40      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980872    | NP 41      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980873    | ET 1       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980874    | ET 2       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980875    | ET 3       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980876    | ET 4       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980877    | ET 5       | 8/31/2021       | Nevada Royalty Corp. |

| BLM Serial # | Claim Name | Expiration Date | Owner                |
|--------------|------------|-----------------|----------------------|
| NMC980878    | ET 6       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980879    | ET 7       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980880    | ET 8       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980881    | ET 9       | 8/31/2021       | Nevada Royalty Corp. |
| NMC980882    | ET 10      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980883    | ET 11      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980884    | ET 12      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980885    | ET 13      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980886    | ET 14      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980887    | ET 15      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980888    | ET 16      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980889    | ET 17      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980890    | ET 18      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980891    | ET 19      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980892    | ET 20      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980893    | ET 21      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980894    | ET 22      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980895    | ET 23      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980896    | ET 24      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980897    | ET 25      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980898    | ET 26      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980899    | ET 27      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980900    | ET 28      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980901    | ET 29      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980902    | ET 30      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980903    | ET 31      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980904    | ET 32      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980905    | ET 33      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980906    | ET 34      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980907    | ET 35      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980908    | ET 36      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980909    | ET 37      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980910    | ET 38      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980911    | ET 39      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980912    | ET 40      | 8/31/2021       | Nevada Royalty Corp. |
| NMC980913    | ET 41      | 8/31/2021       | Nevada Royalty Corp. |
| NMC984635    | GWEN 17    | 8/31/2021       | Nevada Royalty Corp. |
| NMC984636    | GWEN 18    | 8/31/2021       | Nevada Royalty Corp. |
| NMC984637    | PAN 111    | 8/31/2021       | Nevada Royalty Corp. |
| NMC984638    | PAN 112    | 8/31/2021       | Nevada Royalty Corp. |
| NMC984640    | PAN 120    | 8/31/2021       | Nevada Royalty Corp. |
| NMC984642    | PAN 122    | 8/31/2021       | Nevada Royalty Corp. |
| NMC1057292   | PC 19      | 8/31/2021       | GRP Pan, LLC         |


| BLM Serial # | Claim Name | Expiration Date | Owner        |
|--------------|------------|-----------------|--------------|
| NMC1057293   | PC 21      | 8/31/2021       | GRP Pan, LLC |
| NMC1057294   | PC 22      | 8/31/2021       | GRP Pan, LLC |
| NMC1057295   | PC 23      | 8/31/2021       | GRP Pan, LLC |
| NMC1057296   | PC 24      | 8/31/2021       | GRP Pan, LLC |
| NMC1057297   | PC 25      | 8/31/2021       | GRP Pan, LLC |
| NMC1057298   | PC 26      | 8/31/2021       | GRP Pan, LLC |
| NMC1057299   | PC 27      | 8/31/2021       | GRP Pan, LLC |
| NMC1057300   | PC 28      | 8/31/2021       | GRP Pan, LLC |
| NMC1057301   | PC 29      | 8/31/2021       | GRP Pan, LLC |
| NMC1148240   | SP 1       | 8/31/2021       | GRP Pan, LLC |
| NMC1148241   | SP 2       | 8/31/2021       | GRP Pan, LLC |
| NMC1148242   | SP 3       | 8/31/2021       | GRP Pan, LLC |
| NMC1148243   | SP 4       | 8/31/2021       | GRP Pan, LLC |
| NMC1148244   | SP 5       | 8/31/2021       | GRP Pan, LLC |
| NMC1148245   | SP 6       | 8/31/2021       | GRP Pan, LLC |
| NMC1148246   | SP 7       | 8/31/2021       | GRP Pan, LLC |
| NMC1148247   | SP 8       | 8/31/2021       | GRP Pan, LLC |
| NMC1148248   | SP 9       | 8/31/2021       | GRP Pan, LLC |
| NMC1148249   | SP 10      | 8/31/2021       | GRP Pan, LLC |
| NMC1148250   | SP 11      | 8/31/2021       | GRP Pan, LLC |
| NMC1148251   | SP 12      | 8/31/2021       | GRP Pan, LLC |
| NMC1148252   | SP 13      | 8/31/2021       | GRP Pan, LLC |
| NMC1148253   | SP 14      | 8/31/2021       | GRP Pan, LLC |
| NMC1148254   | SP 15      | 8/31/2021       | GRP Pan, LLC |
| NMC1148255   | SP 16      | 8/31/2021       | GRP Pan, LLC |
| NMC1148256   | SP 17      | 8/31/2021       | GRP Pan, LLC |
| NMC1148257   | SP 18      | 8/31/2021       | GRP Pan, LLC |
| NMC1148258   | SP 19      | 8/31/2021       | GRP Pan, LLC |
| NMC1148259   | SP 20      | 8/31/2021       | GRP Pan, LLC |
| NMC1148260   | SP 21      | 8/31/2021       | GRP Pan, LLC |
| NMC1148261   | SP 22      | 8/31/2021       | GRP Pan, LLC |
| NMC1148262   | SP 23      | 8/31/2021       | GRP Pan, LLC |
| NMC1148263   | SP 24      | 8/31/2021       | GRP Pan, LLC |
| NMC1148264   | SP 25      | 8/31/2021       | GRP Pan, LLC |
| NMC1148265   | SP 26      | 8/31/2021       | GRP Pan, LLC |
| NMC958517    | NC 1       | 8/31/2021       | GRP Pan, LLC |
| NMC958518    | NC 2       | 8/31/2021       | GRP Pan, LLC |
| NMC958519    | NC 3       | 8/31/2021       | GRP Pan, LLC |
| NMC958520    | NC 4       | 8/31/2021       | GRP Pan, LLC |
| NMC958521    | NC 5       | 8/31/2021       | GRP Pan, LLC |
| NMC958522    | NC 6       | 8/31/2021       | GRP Pan, LLC |
| NMC958523    | NC 7       | 8/31/2021       | GRP Pan, LLC |
| NMC958524    | NC 8       | 8/31/2021       | GRP Pan, LLC |

| BLM Serial # | Claim Name | Expiration Date | Owner        |
|--------------|------------|-----------------|--------------|
| NMC958525    | NC 9       | 8/31/2021       | GRP Pan, LLC |
| NMC958526    | NC 10      | 8/31/2021       | GRP Pan, LLC |
| NMC958527    | NC 11      | 8/31/2021       | GRP Pan, LLC |
| NMC958528    | NC 12      | 8/31/2021       | GRP Pan, LLC |
| NMC958529    | NC 13      | 8/31/2021       | GRP Pan, LLC |
| NMC958530    | NC 14      | 8/31/2021       | GRP Pan, LLC |
| NMC958531    | NC 15      | 8/31/2021       | GRP Pan, LLC |
| NMC958532    | NC 16      | 8/31/2021       | GRP Pan, LLC |
| NMC958533    | NC 17      | 8/31/2021       | GRP Pan, LLC |
| NMC958534    | NC 18      | 8/31/2021       | GRP Pan, LLC |
| NMC958535    | NC 19      | 8/31/2021       | GRP Pan, LLC |
| NMC958536    | NC 20      | 8/31/2021       | GRP Pan, LLC |
| NMC958537    | NC 21      | 8/31/2021       | GRP Pan, LLC |
| NMC958538    | NC 22      | 8/31/2021       | GRP Pan, LLC |
| NMC958539    | NC 23      | 8/31/2021       | GRP Pan, LLC |
| NMC958540    | NC 24      | 8/31/2021       | GRP Pan, LLC |
| NMC958541    | NC 25      | 8/31/2021       | GRP Pan, LLC |
| NMC958542    | NC 26      | 8/31/2021       | GRP Pan, LLC |
| NMC958543    | NC 27      | 8/31/2021       | GRP Pan, LLC |
| NMC958544    | NC 28      | 8/31/2021       | GRP Pan, LLC |
| NMC958545    | NC 29      | 8/31/2021       | GRP Pan, LLC |
| NMC958569    | NC 53      | 8/31/2021       | GRP Pan, LLC |
| NMC958570    | NC 54      | 8/31/2021       | GRP Pan, LLC |
| NMC958571    | NC 55      | 8/31/2021       | GRP Pan, LLC |
| NMC958572    | NC 56      | 8/31/2021       | GRP Pan, LLC |
| NMC958573    | NC 57      | 8/31/2021       | GRP Pan, LLC |
| NMC958574    | NC 58      | 8/31/2021       | GRP Pan, LLC |
| NMC958589    | NC 73      | 8/31/2021       | GRP Pan, LLC |
| NMC958590    | NC 74      | 8/31/2021       | GRP Pan, LLC |
| NMC958591    | NC 75      | 8/31/2021       | GRP Pan, LLC |
| NMC958592    | NC 76      | 8/31/2021       | GRP Pan, LLC |
| NMC958593    | NC 77      | 8/31/2021       | GRP Pan, LLC |
| NMC958594    | NC 78      | 8/31/2021       | GRP Pan, LLC |
| NMC958595    | NC 79      | 8/31/2021       | GRP Pan, LLC |
| NMC958596    | NC 80      | 8/31/2021       | GRP Pan, LLC |
| NMC958597    | NC 81      | 8/31/2021       | GRP Pan, LLC |
| NMC958598    | NC 82      | 8/31/2021       | GRP Pan, LLC |
| NMC958599    | NC 83      | 8/31/2021       | GRP Pan, LLC |
| NMC958600    | NC 84      | 8/31/2021       | GRP Pan, LLC |
| NMC958601    | NC 85      | 8/31/2021       | GRP Pan, LLC |
| NMC958602    | NC 86      | 8/31/2021       | GRP Pan, LLC |
| NMC958603    | NC 87      | 8/31/2021       | GRP Pan, LLC |
| NMC958604    | NC 88      | 8/31/2021       | GRP Pan, LLC |

| BLM Serial # | Claim Name | Expiration Date | Owner        |
|--------------|------------|-----------------|--------------|
| NMC958605    | NC 89      | 8/31/2021       | GRP Pan, LLC |
| NMC958606    | NC 90      | 8/31/2021       | GRP Pan, LLC |
| NMC958607    | NC 91      | 8/31/2021       | GRP Pan, LLC |
| NMC958608    | NC 92      | 8/31/2021       | GRP Pan, LLC |
| NMC958609    | NC 93      | 8/31/2021       | GRP Pan, LLC |
| NMC965337    | GWEN 1     | 8/31/2021       | GRP Pan, LLC |
| NMC965338    | GWEN 2     | 8/31/2021       | GRP Pan, LLC |
| NMC965339    | GWEN 3     | 8/31/2021       | GRP Pan, LLC |
| NMC965340    | GWEN 4     | 8/31/2021       | GRP Pan, LLC |
| NMC965341    | GWEN 5     | 8/31/2021       | GRP Pan, LLC |
| NMC965342    | GWEN 6     | 8/31/2021       | GRP Pan, LLC |
| NMC965343    | GWEN 7     | 8/31/2021       | GRP Pan, LLC |
| NMC965344    | GWEN 8     | 8/31/2021       | GRP Pan, LLC |
| NMC973537    | REE 82     | 8/31/2021       | GRP Pan, LLC |
| NMC977346    | GWEN 50    | 8/31/2021       | GRP Pan, LLC |
| NMC977347    | GWEN 51    | 8/31/2021       | GRP Pan, LLC |
| NMC977350    | GWEN 54    | 8/31/2021       | GRP Pan, LLC |
| NMC977353    | GWEN 59    | 8/31/2021       | GRP Pan, LLC |
| NMC977354    | GWEN 60    | 8/31/2021       | GRP Pan, LLC |
| NMC977355    | GWEN 61    | 8/31/2021       | GRP Pan, LLC |
| NMC984556    | GWEN 19    | 8/31/2021       | GRP Pan, LLC |
| NMC984557    | GWEN 20    | 8/31/2021       | GRP Pan, LLC |
| NMC984558    | GWEN 21    | 8/31/2021       | GRP Pan, LLC |
| NMC984559    | GWEN 22    | 8/31/2021       | GRP Pan, LLC |
| NMC984560    | GWEN 23    | 8/31/2021       | GRP Pan, LLC |
| NMC984561    | GWEN 24    | 8/31/2021       | GRP Pan, LLC |
| NMC984562    | GWEN 25    | 8/31/2021       | GRP Pan, LLC |
| NMC984563    | GWEN 26    | 8/31/2021       | GRP Pan, LLC |
| NMC984564    | GWEN 27    | 8/31/2021       | GRP Pan, LLC |
| NMC984565    | GWEN 28    | 8/31/2021       | GRP Pan, LLC |
| NMC984566    | GWEN 29    | 8/31/2021       | GRP Pan, LLC |
| NMC984567    | GWEN 30    | 8/31/2021       | GRP Pan, LLC |
| NMC984568    | GWEN 31    | 8/31/2021       | GRP Pan, LLC |
| NMC984569    | GWEN 32    | 8/31/2021       | GRP Pan, LLC |
| NMC984570    | GWEN 33    | 8/31/2021       | GRP Pan, LLC |
| NMC984571    | GWEN 34    | 8/31/2021       | GRP Pan, LLC |
| NMC984572    | GWEN 35    | 8/31/2021       | GRP Pan, LLC |
| NMC984573    | GWEN 36    | 8/31/2021       | GRP Pan, LLC |
| NMC984574    | GWEN 37    | 8/31/2021       | GRP Pan, LLC |
| NMC984575    | GWEN 38    | 8/31/2021       | GRP Pan, LLC |
| NMC984576    | GWEN 39    | 8/31/2021       | GRP Pan, LLC |
| NMC984577    | GWEN 40    | 8/31/2021       | GRP Pan, LLC |
| NMC984578    | GWEN 41    | 8/31/2021       | GRP Pan, LLC |

## Appendices

| BLM Serial # | Claim Name | Expiration Date | Owner        |
|--------------|------------|-----------------|--------------|
| NMC984579    | GWEN 42    | 8/31/2021       | GRP Pan, LLC |
| NMC984580    | GWEN 43    | 8/31/2021       | GRP Pan, LLC |
| NMC984581    | GWEN 44    | 8/31/2021       | GRP Pan, LLC |
| NMC984582    | GWEN 45    | 8/31/2021       | GRP Pan, LLC |



725-1 Permit No. 20657 Fee Milepost JAP- 8.00 District 3 33-1-12 Applicant: Type of Work: Approach FOR DEPARTMENT USE ONLY REVOCABLE APPLICATION AND PERMIT FOR OCCUPANCY OF NEVADA DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY (Under the provisions of NRS 408.423, 408.210 and NAC 408) 1. Location where excavation, construction, installation and/or occupancy is proposed US-50 STA. 428+87, MP. WP-8.00 Local name of highway Street address or nearest cross street 2. Describe in detail the type and scope of work; capacity or size of facility; stages and time frame for development; scheduled dates for start and completion. Attach 4 sets of detailed plans or drawings. Construct a Type-V approach along US Highway 50 at STA. 428+87. The new approach is needed for access to Midway Gold's new exploration road. The roadway will be constructed shortly after approval by the BLM. It is anticipated that construction will begin early in 2012 pending upon BLM approval, and be completed early in 2013. We will notify NDOT of BLM's approval so that a more accurate construction start date can be set. 3. PERMITTEE hereby acknowledges that he has read and received a copy of the specific Terms and Conditions Relating to Right-of-Way Occupancy Permits issued by the State of Nevada Department of Transportation, and accepts said terms and conditions and any additional terms and conditions stated in this permit. SPECIFIC TERMS AND CONDITIONS APPURTENANT TO THIS PERMIT ARE LISTED ON PAGE 2. 4. 5. THE PERMIT SHALL BE SIGNED AND RETURNED TO THE DISTRICT OFFICE. Midway Gold Company Name of PERMITTEE (Type or Print) Signature of PERMITTEE 705 Avenue K Address Ely, Nevada 89301 December 20, 2011

(775) 289-2490

Fax No.

Date of Application

Permittee's I.D. No. or Parcel No.

City, State, Zip

(775) 289-2851

Phone No.